Abstract
Fuzzy classification, fuzzy diagnosis, and fuzzy data analysis are — besides fuzzy control — the most important application areas of fuzzy logic. In this chapter four practical tasks are presented which can roughly be characterized as technical classification and diagnosis, fuzzy data analysis in chemical model creation, medical object recognition, and decision making support by a life insurance. Neural networks and analytical methods of classical statistics try to find explicitely a classifying function with the help of a sample. The development of knowledge-based systems has stimulated modern constructive approaches like IF-THEN-rules and causal networks. In order to deal with vague observations, vague relationships between features, and/or non-crip classification, these analytical and constructive methods were transfered from crisp numbers to fuzzy sets. The contributions of fuzzy sets to the four applications of this chapter are presented. Some general remarks on the applicability and limitations of fuzzy classification conclude this short introduction to fuzzy classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Arabshahi, J. J. Choi, J. Marks & T. P. Candell: “Fuzzy Control of Backpropagation”. Proceed. IEEE Intern. Conf. on Fuzzy Systems, San Diego, 1992.
S. K. Andersen, K. G. Olesen, F. V. Jensen & F. Jensen: “HUGIN — a Shell for Building Bayesian Belief Universes for Expert Systems”. Proceed. 11th Int. Conf. Artif. Intell., Detroit, 1989.
J. C. Bezdek: “Pattern Recognition with Fuzzy Objective Function Algorithm”. Plenum Press, New York, 1981.
S. Bocklisch & N. Bitterlich: “Fuzzy Pattern Classification — Methodology and Applications”. In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994.
J. C. Bezdek & J. D. Harris: “Convex Decompositions of Fuzzy Partitions”. In: D. Dubois, H. Prade, R. R. Yager (eds.): “Fuzzy Sets for Intelligent Systems”. Morgan Kaufmann Publ., San Mateo, 1993, pp. 617–628.
H. Bandemer & W. Näther: “Fuzzy Data Analysis”. Kluwer Pubi., Dordrecht, 1992.
B. G. Buchanan & E. Shortliffe (eds.): “Rule-Based Expert Systems: The MYCIN Experiments on the Stanford Heuristic Programming Project”. Addison Wesley, New York, 1984.
K. Brahim & A. Zell: “ANFIS-SNSS: Adaptive Network Fuzzy Inference System in the ‘Stuttgarter Neuronale Netze Simulator’” . In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994
A. Celmins: “Least Squares Model Fitting to Fuzzy Vector Data”. Fuzzy Sets and Systems 22 (1987), pp. 245–269.
W. Clancey: “Heuristic Classification”. Artif. Intell. 27 (1985), pp. 289–350.
P.-R. Chang & C. C. Tai: “Model-Reference Neural Color Correction for HDTV-Systems based on Fuzzy Information Criteria”. Proceed. Intern. Conf. on Fuzzy Systems, San Francisco, 1993.
A. Cichocki & R. Unbehauen: “Neural Networks for Optimisation and Signal Processing”. Teubner & Wiley, Stuttgart & Chichester, 1993.
Ph. Diamond: “Fuzzy Least Squares”. Inform. Sc. 46 (1988), pp. 141–157.
D. Driankov, H. Hellendoorn & M. Reinfrank: “An Introduction to Fuzzy Control”. Springer Verlag, Heidelberg, 1993.
S. B. Duran & P. L. Odell: “Cluster Analysis: A Survey”. Springer Verlag, Berlin, 1974.
D. Dubois, H. Prade & R. R. Yager (eds.): “Fuzzy Sets for Intelligent Systems”. Morgan Kaufmann, San Mateo, 1993.
D. E. Heckerman: “Probabilistic Interpretations for MYCIN’S Certainty Factors”. In: L. Kanal & J. Lemmer (eds.): “Uncertainty in Artificial Intelligence”. North Holland Publ., Amsterdam, 1986, pp. 167–196.
S. Horikawa, T. Furuhashi & Y. Ushikawa: “On Fuzzy Modeling using Fuzzy Neural Networks with the Backpropagation Algorithm”. IEEE Transact, on Neural Networks, Vol. 3, No. 5 (1992).
S. K. Halgamuge, A. Mari & M Glesner: “Fast Perceptron Learning by Fuzzy Controlled Dynamic Adaption of Network Parameters”. In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994.
J.-S. Roger Jang: “Self-Learning Fuz2y Controllers based on Temporal Backpropagation”. IEEE Transact. on Neural Networks, Vol. 3, No. 5 (1992), pp. 714–723.
Y. Kodratoff: “Introduction to Machine Learning”. Pitman, 1988.
B. Kosko: “Neural Networks and Fuzzy Systems”. Prentice Hall, Englewood Cliffs, 1992.
R. Kruse: “Fuzzy sets — einige Klarstellungen”. KI 4/93 (1993), S. 73–74.
M. Kudra: “Comparison of Methods to Evaluate Fuzzy Parameters in Explicit Functional Relationships”. Freiberger Forschungshefte D 197 (1990), Dt. Verlag f. Grundstoffindustrie, pp. 43–58.
M. Kudra: “A Fuzzy Method to Spectra Interpretation”. In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994.
D. H. Kraft & D. A. Buell: “Fuzzy Sets and Generalized Boolean Retrieval Systems”. In: D. Dubois, H. Prade, R. R. Yager (eds.): “Fuzzy Sets for Intelligent Systems”. Morgan Kaufmann, San Mateo, 1993, pp. 648–659.
L. Köhler & P. Jensch: “Fuzzy Elastic Matching of Medical Objects Using Fuzzy Geometric Representations”. In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994.
F. Klawonn, R. Kruse & D. Nauck: “Neuronale Netze in der KI”. Vieweg Verlag, Braunschweig, 1993.
R. Kruse, K. D. Meyer: “Statistics With Vague Data”. Reidei, Dordrecht, 1987.
K. V. Mardia, J. T. Kent & J. M. Bibby: “Multivariate Analysis”. Academic Press, London, 1979.
W. Näther & M. Albrecht: “Linear Regression with Random Fuzzy Observations”. Statistics 21 (1990), pp. 521–531.
J. Pearl: “Fusion, Propagation, and Structuring in Belief Networks”. Artific. Intell., Vol. 29 (1986), pp. 241–288.
J. Pearl: “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference”. Morgan Kaufmann Publ., San Mateo, 1988.
Yun Peng & J. Reggia: “Abductive Inference Models for Diagnostic Problem-Solving”. Springer Series Symbolic Computation — Artificial Intelligence”. Springer Verlag, Heidelberg, 1990.
J. R. Quinlan: “Discovering Rules from Large Collections of Examples: A Case Study”. In: D. Michie (ed.): “Expert Systems in the Micro-Electronic Age”. Edinburgh University Press, 1979.
E. H. Rusini: “Numerical Methods für Fuzzy Clustering”. In: D. Dubois, H. Prade, R. R. Yager (eds.): “Fuzzy Sets for Intelligent Systems”. Morgan Kaufmann Publ., San Mateo, 1993, pp. 599–614.
J. Schürmann: “PolynomMassifikatoren fur die Zeichenerkennung”. Oldenbourg Verlag, München, 1977.
D. Schoder & H. Geiger: “Das Geheimnis um Neuro-Fuzzy — Kunstliche Intelligenzen profitieren voneinander”. Elektronik plus 2/93 (1993), S. 123–127.
S. R. Sapavian & D. Landgrebe: “A Survey of Decision Tree Classifier Methodology”. IEEE Transact. Systems, Man & Cybern., Vol. 21, No. 3 (1991), pp. 660–674.
P. Shenoy, G. Shafer: “Axioms for Probability and Belief-Function Propagation”. In: R. D. Shachter, T. S. Levttt, L. N. Kanal & J. F. Lemmer (eds.): “Uncertainty in Artificial Intelligence”, Vol. 4. North Holland Publ., Amsterdam, 1990.
K. Sundermeyer: “Knowledge-Based Systems — Terminology and References”. BI Wissenschaftsverlag, Mannheim, 1991.
R. Viertl: “Einführung in die Statistik”. Kap. VII: “Statistische Analyse für unscharfe Daten”. Springer Verlag, Wien, 1990.
H.-G. Weil: “Einfühlsames Automobil — Schaltlogik mit integriertem Fuzzy-Regler für ein Automatikgetriebe”. Elektronik plus 2/93 (1993), S. 91–94.
H.-G. Weil, G. Probst & F. Graf: “Fuzzy Shift Logic for an Automatic Transmission System”. Proceed. EUFIT ‘93, Aachen, 1993.
M. Wiemers: “FRED (Fuzzy Preference Decision Support System) — a Knowledge-Based Approach for Fuzzy Multiattribute Preference Decision Making”. In: R. Kruse, J. Gebhardt & R. Palm (eds.): “Fuzzy Systems in Computer Science”. Vieweg Verlag, Braunschweig, 1994.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden
About this chapter
Cite this chapter
Gramann, K.D.M. (1994). Fuzzy Classification: An Overview. In: Kruse, R., Gebhardt, J., Palm, R. (eds) Fuzzy-Systems in Computer Science. Artificial Intelligence / Künstliche Intelligenz. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86825-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-322-86825-1_22
Publisher Name: Vieweg+Teubner Verlag
Print ISBN: 978-3-322-86826-8
Online ISBN: 978-3-322-86825-1
eBook Packages: Springer Book Archive