Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Loop Formulas for Disjunctive Logic Programs

  • Conference paper
Logic Programming (ICLP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2916))

Included in the following conference series:

Abstract

We extend Clark’s definition of a completed program and the definition of a loop formula due to Lin and Zhao to disjunctive logic programs. Our main result, generalizing the Lin/Zhao theorem, shows that answer sets for a disjunctive program can be characterized as the models of its completion that satisfy the loop formulas. The concept of a tight program and Fages’ theorem are extended to disjunctive programs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babovich, Y., Erdem, E., Lifschitz, V.: Fages’ theorem and answer set programming. In: Proc. Eighth Int’l. Workshop on Non-Monotonic Reasoning (2000), http://arxiv.org/abs/cs.ai/0003042

  2. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 20, 73–148 (1994)

    Article  MathSciNet  Google Scholar 

  3. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1996)

    Article  MathSciNet  Google Scholar 

  4. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  5. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application to nonmonotonic logics. In: Miller, D.(ed.) Proc. ILPS 1993, pp. 266–278 (1993)

    Google Scholar 

  6. Erdem, E., Lifschitz, V.: Transformations of logic programs related to causality and planning. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 107–116. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3, 499–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K., (eds.) Logic Programming: Proc. Fifth Int’l Conf. and Symp., pp. 1070–1080 (1988)

    Google Scholar 

  10. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35, 39–78 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  13. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In: Proc. AAAI 2002 (2002)

    Google Scholar 

  14. Lloyd, J., Topor, R.: Making Prolog more expressive. Journal of Logic Programming 3, 225–240 (1984)

    Article  MathSciNet  Google Scholar 

  15. Marek, V., Subrahmanian, V.S.: The relationship between logic program semantics and non-monotonic reasoning. In: Levi, G., Martelli, M., (eds.) Logic Programming: Proc. Sixth Int’l Conf., pp. 600–617 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Lifschitz, V. (2003). Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C. (eds) Logic Programming. ICLP 2003. Lecture Notes in Computer Science, vol 2916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24599-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24599-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20642-2

  • Online ISBN: 978-3-540-24599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics