Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tutte le Algebre Insieme: Concepts, Discussions and Relations of Stochastic Process Algebras with General Distributions

  • Chapter
Validation of Stochastic Systems

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2925))

Abstract

We report on the state of the art in the formal specification and analysis of concurrent systems whose activity duration depends on general probability distributions. First of all the basic notions and results introduced in the literature are explained and, on this basis, a conceptual classification of the different approaches is presented. We observe that most of the approaches agree on the fact that the specification of systems with general distributions has a three level structure: the process algebra level, the level of symbolic semantics and the level of concrete semantics. Based on such observations, a new very expressive model is introduced for representing timed systems with general distributions. We show that many of the approaches in the literature can be mapped into this model establishing therefore a formal framework to compare these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 113–126. Springer, Heidelberg (1991)

    Google Scholar 

  2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  3. Bernardo, M.: Theory and Application of Extended Markovian Process Algebras. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 1999)

    Google Scholar 

  4. Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 2002), Available at http://www.cs.unibo.it/~bravetti/

  5. Bravetti, M., Bernardo, M.: Compositional asymmetric cooperations for process algebras with probabilities, priorities, and time. In: Proc. of the 1st Int. Workshop on Models for Time-Critical Systems, MTCS 2000, State College, PA. Electronic Notes in Theoretical Computer Science, vol. 39(3). Elsevier, Amsterdam (2000)

    Google Scholar 

  6. Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebra. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak st bisimulation for a process algebra with recursion and action refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282, 5–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brinksma, E., Katoen, J.-P., Langerak, R., Latella, D.: A stochastic causalitybased process algebra. The Computer Journal 38(6), 552–565 (1995)

    Article  Google Scholar 

  10. Cox, D.R.: The analysis of non-markovian stochastic processes by the inclusion of supplementary variables. In: Proc. of the Cambridge Philosophical Society, vol. 51, pp. 433–440 (1955)

    Google Scholar 

  11. D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. PhD thesis, Department of Computer Science, University of Twente (1999)

    Google Scholar 

  12. D’Argenio, P.R.: A compositional translation of stochastic automata into timed automata. Technical Report CTIT 00-08, Department of Computer Science, University of Twente (2000)

    Google Scholar 

  13. D’Argenio, P.R., Hermanns, H., Katoen, J.-P., Klaren, R.: MoDeST - A modelling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. D’Argenio, P.R., Katoen, J.-P., Brinksma, E.: An algebraic approach to the specification of stochastic systems (extended abstract). In: Gries, D., de Roever, W.-P. (eds.) Proceedings of the IFIP Working Conference on Programming Concepts and Methods, PROCOMET 1998, Shelter Island, New York, USA. IFIP, pp. 126–147. Chapman & Hall, Boca Raton (1998)

    Google Scholar 

  15. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)

    Google Scholar 

  16. Glynn, P.W.: A GSMP formalism for discrete event simulation. Proceedings of the IEEE 77(1), 14–23 (1989)

    Article  Google Scholar 

  17. Götz, N., Herzog, U., Rettelbach, M.: TIPP - Introduction and application to protocol performance analysis. In: König, H. (ed.) Formale Beschreibungstechniken für verteilte Systeme. FOKUS. Saur Publishers (1993)

    Google Scholar 

  18. Harrison, P.G., Strulo, B.: Spades: Stochastic process algebra for discrete event simulation. Journal of Logic and Computation 10(1), 3–42 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  20. Hillston, J.: A Compositional Approach to Performance Modelling. In: Distinguished Dissertation in Computer Science, Cambridge University Press, Cambridge (1996)

    Google Scholar 

  21. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)

    MATH  Google Scholar 

  22. Kanani, K.: A Unified Framework for Systematic Quantitative and Qualitative Analysis of Communicating Systems. PhD thesis, Imperial College, UK (1998)

    Google Scholar 

  23. Katoen, J.-P.: Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Department of Computer Science, University of Twente (April 1996)

    Google Scholar 

  24. Katoen, J.-P., Brinksma, E., Latella, D., Langerak, R.: Stochastic simulation of event structures. In: Ribaudo [33], pp. 21–40

    Google Scholar 

  25. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 2nd edn. McGraw-Hill Inc., New York (1991)

    Google Scholar 

  28. López, N., Núñez, M.: NMSPA: A non-Markovian model for stochastic processes. In: Proceedings of the International Workshop on Distributed System Validation and Verification (DSVV 2000), Taipei, Taiwan, ROC (2000), http://www.math.ntu.edu.tw/~eric/dsvvproc/

  29. López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. López, N., Núñez, M.: Weak stochastic bisimulation for non-markovian processes (2003) (Submitted for publication)

    Google Scholar 

  31. Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)

    MATH  Google Scholar 

  32. Priami, C.: Stochastic π-calculus with general distributions. In: Ribaudo [33], pp.41–57

    Google Scholar 

  33. Ribaudo, M. (ed.): Proc. of the 4th Workshop on Process Algebras and Performance Modelling, PAPM 1996. Università di Torino, Torino, Italy (1996)

    Google Scholar 

  34. Ruys, T.C., Langerak, R., Katoen, J.-P., Latella, D., Massink, M.: First passage time analysis of stochastic process algebra using partial orders. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 220–235. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  35. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1995)

    Google Scholar 

  36. Strulo, B.: Process Algebra for Discrete Event Simulation. PhD thesis, Department of Computing, Imperial College, University of London (1993)

    Google Scholar 

  37. Winskel, G.: Events in Computation. PhD thesis, Department of Computer Science, University of Edinburgh (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bravetti, M., D’Argenio, P.R. (2004). Tutte le Algebre Insieme: Concepts, Discussions and Relations of Stochastic Process Algebras with General Distributions. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, JP., Siegle, M. (eds) Validation of Stochastic Systems. Lecture Notes in Computer Science, vol 2925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24611-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24611-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22265-1

  • Online ISBN: 978-3-540-24611-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics