Abstract
We report on the state of the art in the formal specification and analysis of concurrent systems whose activity duration depends on general probability distributions. First of all the basic notions and results introduced in the literature are explained and, on this basis, a conceptual classification of the different approaches is presented. We observe that most of the approaches agree on the fact that the specification of systems with general distributions has a three level structure: the process algebra level, the level of symbolic semantics and the level of concrete semantics. Based on such observations, a new very expressive model is introduced for representing timed systems with general distributions. We show that many of the approaches in the literature can be mapped into this model establishing therefore a formal framework to compare these approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 113–126. Springer, Heidelberg (1991)
Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)
Bernardo, M.: Theory and Application of Extended Markovian Process Algebras. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 1999)
Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 2002), Available at http://www.cs.unibo.it/~bravetti/
Bravetti, M., Bernardo, M.: Compositional asymmetric cooperations for process algebras with probabilities, priorities, and time. In: Proc. of the 1st Int. Workshop on Models for Time-Critical Systems, MTCS 2000, State College, PA. Electronic Notes in Theoretical Computer Science, vol. 39(3). Elsevier, Amsterdam (2000)
Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebra. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)
Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak st bisimulation for a process algebra with recursion and action refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)
Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282, 5–32 (2002)
Brinksma, E., Katoen, J.-P., Langerak, R., Latella, D.: A stochastic causalitybased process algebra. The Computer Journal 38(6), 552–565 (1995)
Cox, D.R.: The analysis of non-markovian stochastic processes by the inclusion of supplementary variables. In: Proc. of the Cambridge Philosophical Society, vol. 51, pp. 433–440 (1955)
D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. PhD thesis, Department of Computer Science, University of Twente (1999)
D’Argenio, P.R.: A compositional translation of stochastic automata into timed automata. Technical Report CTIT 00-08, Department of Computer Science, University of Twente (2000)
D’Argenio, P.R., Hermanns, H., Katoen, J.-P., Klaren, R.: MoDeST - A modelling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)
D’Argenio, P.R., Katoen, J.-P., Brinksma, E.: An algebraic approach to the specification of stochastic systems (extended abstract). In: Gries, D., de Roever, W.-P. (eds.) Proceedings of the IFIP Working Conference on Programming Concepts and Methods, PROCOMET 1998, Shelter Island, New York, USA. IFIP, pp. 126–147. Chapman & Hall, Boca Raton (1998)
van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)
Glynn, P.W.: A GSMP formalism for discrete event simulation. Proceedings of the IEEE 77(1), 14–23 (1989)
Götz, N., Herzog, U., Rettelbach, M.: TIPP - Introduction and application to protocol performance analysis. In: König, H. (ed.) Formale Beschreibungstechniken für verteilte Systeme. FOKUS. Saur Publishers (1993)
Harrison, P.G., Strulo, B.: Spades: Stochastic process algebra for discrete event simulation. Journal of Logic and Computation 10(1), 3–42 (2000)
Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)
Hillston, J.: A Compositional Approach to Performance Modelling. In: Distinguished Dissertation in Computer Science, Cambridge University Press, Cambridge (1996)
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)
Kanani, K.: A Unified Framework for Systematic Quantitative and Qualitative Analysis of Communicating Systems. PhD thesis, Imperial College, UK (1998)
Katoen, J.-P.: Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Department of Computer Science, University of Twente (April 1996)
Katoen, J.-P., Brinksma, E., Latella, D., Langerak, R.: Stochastic simulation of event structures. In: Ribaudo [33], pp. 21–40
Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)
Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 2nd edn. McGraw-Hill Inc., New York (1991)
López, N., Núñez, M.: NMSPA: A non-Markovian model for stochastic processes. In: Proceedings of the International Workshop on Distributed System Validation and Verification (DSVV 2000), Taipei, Taiwan, ROC (2000), http://www.math.ntu.edu.tw/~eric/dsvvproc/
López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)
López, N., Núñez, M.: Weak stochastic bisimulation for non-markovian processes (2003) (Submitted for publication)
Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)
Priami, C.: Stochastic π-calculus with general distributions. In: Ribaudo [33], pp.41–57
Ribaudo, M. (ed.): Proc. of the 4th Workshop on Process Algebras and Performance Modelling, PAPM 1996. Università di Torino, Torino, Italy (1996)
Ruys, T.C., Langerak, R., Katoen, J.-P., Latella, D., Massink, M.: First passage time analysis of stochastic process algebra using partial orders. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 220–235. Springer, Heidelberg (2001)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1995)
Strulo, B.: Process Algebra for Discrete Event Simulation. PhD thesis, Department of Computing, Imperial College, University of London (1993)
Winskel, G.: Events in Computation. PhD thesis, Department of Computer Science, University of Edinburgh (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bravetti, M., D’Argenio, P.R. (2004). Tutte le Algebre Insieme: Concepts, Discussions and Relations of Stochastic Process Algebras with General Distributions. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, JP., Siegle, M. (eds) Validation of Stochastic Systems. Lecture Notes in Computer Science, vol 2925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24611-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-24611-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22265-1
Online ISBN: 978-3-540-24611-4
eBook Packages: Springer Book Archive