Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reject-Optional LVQ-Based Two-Level Classifier to Improve Reliability in Footstep Identification

  • Conference paper
Pervasive Computing (Pervasive 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3001))

Included in the following conference series:

Abstract

This paper reports experiments of recognizing walkers based on measurements with a pressure-sensitive EMFi-floor. Identification is based on a two-level classifier system. The first level performs Learning Vector Quantization (LVQ) with a reject option to identify or to reject a single footstep. The second level classifies or rejects a sequence of three consecutive identified footsteps based on the knowledge from the first level. The system was able to reduce classification error compared to a single footstep classifier without a reject option. The results show a 90% overall success rate with a 20% rejection rate, identifying eleven walkers, which can be considered very reliable.

This work was funded by TEKES and Academy of Finland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Essa, I.A.: Ubiquitous sensing for smart and aware environments: Technologies towards the building of an aware home. IEEE Personal Communications (October 2000), Special issue on networking the physical world

    Google Scholar 

  2. Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: ORL active floor. IEEE Personal Communications 4(5), 35–41 (1997)

    Article  Google Scholar 

  3. Orr, R.J., Abowd, G.D.: The smart floor: A mechanism for natural user identification and tracking. In: Proc. 2000 Conf. Human Factors in Computing Systems (CHI 2000), ACM Press, New York (2000)

    Google Scholar 

  4. Pirttikangas, S., Suutala, J., Riekki, J., Röning, J.: Footstep identification from pressure signals using Hidden Markov Models. In: Proc. Finnish Signal Processing Symposium, FINSIG 2003, May 2003, pp. 124–128 (2003)

    Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Pirttikangas, S., Suutala, J., Riekki, J., Röning, J.: Learning vector quantization in footstep identification. In: Hamza, M.H. (ed.) Proc. 3rd IASTED International Conference on Artificial Intelligence and Applications (AIA 2003), Benalmadena, Spain, IASTED, September 8-10, pp. 413–417, ACTA Press (2003)

    Google Scholar 

  7. Paajanen, M., Lekkala, J., Kirjavainen, K.: Electromechanical film (EMFi) - a new multipurpose electret material. Sensors and actuators A 84(1-2) (August 2000)

    Google Scholar 

  8. De Stefano, C., Sansone, C., Vento, M.: To reject or not to reject: That is the question - an answer in case of neural classifiers. IEEE Transactions on Systems, Man, and Cybernetics part c: Applications and Reviews 30(1), 84–94 (2000)

    Article  Google Scholar 

  9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  10. Ho, T.K.: Recognition of handwritten digits by combining independent learning vector quantization. In: Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 818–821 (October 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suutala, J., Pirttikangas, S., Riekki, J., Röning, J. (2004). Reject-Optional LVQ-Based Two-Level Classifier to Improve Reliability in Footstep Identification. In: Ferscha, A., Mattern, F. (eds) Pervasive Computing. Pervasive 2004. Lecture Notes in Computer Science, vol 3001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24646-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24646-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21835-7

  • Online ISBN: 978-3-540-24646-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics