Abstract
Image stitching is used to combine several individual images having some overlap into a composite image. The quality of image stitching is measured by the similarity of the stitched image to each of the input images, and by the visibility of the seam between the stitched images.
In order to define and get the best possible stitching, we introduce several formal cost functions for the evaluation of the quality of stitching. In these cost functions, the similarity to the input images and the visibility of the seam are defined in the gradient domain, minimizing the disturbing edges along the seam. A good image stitching will optimize these cost functions, overcoming both photometric inconsistencies and geometric misalignments between the stitched images.
This approach is demonstrated in the generation of panoramic images and in object blending. Comparisons with existing methods show the benefits of optimizing the measures in the gradient domain.
This research was supported (in part) by the EU under the Presence Initiative through contract IST-2001-39184 BENOGO.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Freeman, W., Pasztor, E., Carmichael, O.: Learning low-level vision. In: Int. Conf. on Computer Vision, pp. 1182–1189 (1999)
Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: Proceedings of SIGGRAPH, pp. 341–346 (2001)
Milgram, D.: Computer methods for creating photomosaics. IEEE Trans. Computer 23, 1113–1119 (1975)
Davis, J.: Mosaics of scenes with moving objects. In: CVPR, pp. 354–360 (1998)
Peleg, S., Rousso, B., Rav-Acha, A., Zomet, A.: Mosaicing on adaptive manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1144–1154 (2000)
Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: CVPR, vol. II, pp. 509–516 (2001)
Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J.: Pyramid method in image processing. RCA Engineer 29(6), 33–41 (1984)
Peleg, S.: Elimination of seams from photomosaics. CGIP 16, 90–94 (1981)
Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proceedings of SIGGRAPH 2001, pp. 249–356 (2001)
Perez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH, pp. 313–318 (2003)
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Processing 10 (2001)
Weiss, Y.: Deriving intrinsic images from image sequences. In: ICCV, vol. II, pp. 68–75 (2001)
Tappen, M., Freeman, W., Adelson, E.: Recovering intrinsic images from a single image. In: NIPS, vol. 15. The MIT Press, Cambridge (2002)
Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)
Levin, A., Zomet, A., Weiss, Y.: Learning to perceive transparency from the statistics of natural scenes. In: NIPS, vol. 15. MIT Press, Cambridge (2002)
Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain, hebrew university tr:2003-82 (2003), available on, http://leibniz.cs.huji.ac.il/tr/acc/2003/huji-cse-ltr-2003-82_blending.pdf
Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 10, 439–451 (1988)
Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)
Chvátal, V.: Linear Programming. W.H. Freeman and CO., New York (1983)
Vanderbei, R.: Loqo (2000), http://www.princeton.edu/rvdb/
Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)
Simoncelli, E.: Bayesian denoising of visual images in the wavelet domain. BIWBM 18, 291–308 (1999)
Wainwright, M., Simoncelli, E., Willsky, A.: Random cascades of gaussian scale mixtures for natural images. In: Int. Conf. on Image Processing, vol. I, pp. 260–263 (2000)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Levin, A., Zomet, A., Peleg, S., Weiss, Y. (2004). Seamless Image Stitching in the Gradient Domain. In: Pajdla, T., Matas, J. (eds) Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24673-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-24673-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21981-1
Online ISBN: 978-3-540-24673-2
eBook Packages: Springer Book Archive