Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient and Reliable Evolutionary Multiobjective Optimization Using ε-Dominance Archiving and Adaptive Population Sizing

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

  • 1181 Accesses

Abstract

This paper introduces a new algorithm, termed as the ε-NSGA-II that enables the user to specify the precision with which they want to quantify the Pareto optimal set and all other parameters are automatically specified within the algorithm. The development of the ε-NSGA-II was motivated by the steady state ε-MOEA developed by Deb et al. [3]. The next section briefly describes the ε-NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons LTD, New York (2001)

    MATH  Google Scholar 

  2. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 125–148 (2000)

    Article  Google Scholar 

  3. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. Indian Institute of Technology, Kanpur (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devireddy, V., Reed, P. (2004). Efficient and Reliable Evolutionary Multiobjective Optimization Using ε-Dominance Archiving and Adaptive Population Sizing. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics