Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis and Improvements of the Adaptive Discretization Intervals Knowledge Representation

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

Abstract

In order to handle classification problems with real-valued attributes using discretization algorithms it is necessary to obtain a good and reduced set of cut points in order to learn successfully. In recent years a discretization-based knowledge representation called Adaptive Discretization Intervals has been developed that can use several discretizers at the same time and also combines adjacent cut points. In this paper we analyze its behavior in several aspects. From this analysis we propose some fixes and new operators that manage to improve the performance of the representation across a large set of domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

  3. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation Conference, pp. 461–468. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  4. Giráldex, R., Aguilar-Ruiz, J., Riquelme, J.: Natural coding: A more efficient representation for evolutionary learning. In: GECCO 2003: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 979–990. Springer, Heidelberg (2003)

    Google Scholar 

  5. Divina, F., Keijzer, M., Marchiori, E.: A method for handling numerical attributes in GA-based inductive concept learners. In: GECCO 2003: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 898–908. Springer, Heidelberg (2003)

    Google Scholar 

  6. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 651–656 (1991)

    Google Scholar 

  7. Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based learning classifier system. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1818–1831. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 59–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

  10. Martínez Marroquín, E., Vos, C., et al.: Morphological analysis of mammary biopsy images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 943–947 (1996)

    Google Scholar 

  11. Martí, J., Cufí, X., Regincós, J., et al.: Shape-based feature selection for microcalcification evaluation. In: Imaging Conference on Image Processing, vol. 3338, pp. 1215–1224 (1998)

    Google Scholar 

  12. Witten, I.H., Frank, E.: Data Mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  14. Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  15. Brodley, C.: Addressing the selective superiority problem: Automatic algorithm /model class selection (1993)

    Google Scholar 

  16. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 54–68 (2003)

    Article  Google Scholar 

  17. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., Forrest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland, Center for the Study of Complex Systems, pp. 111–121 (1999)

    Google Scholar 

  18. Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary Computation Journal 11, 298–336 (2003)

    Article  Google Scholar 

  19. Aguilar, J., Bacardit, J., Divina, F.: Experimental evaluation of discretization schemes for rule induction. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 828–839. Springer, Heidelberg (2004) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bacardit, J., Garrell, J.M. (2004). Analysis and Improvements of the Adaptive Discretization Intervals Knowledge Representation. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics