Abstract
In order to handle classification problems with real-valued attributes using discretization algorithms it is necessary to obtain a good and reduced set of cut points in order to learn successfully. In recent years a discretization-based knowledge representation called Adaptive Discretization Intervals has been developed that can use several discretizers at the same time and also combines adjacent cut points. In this paper we analyze its behavior in several aspects. From this analysis we propose some fixes and new operators that manage to improve the performance of the representation across a large set of domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)
Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation Conference, pp. 461–468. Morgan Kaufmann, San Francisco (2001)
Giráldex, R., Aguilar-Ruiz, J., Riquelme, J.: Natural coding: A more efficient representation for evolutionary learning. In: GECCO 2003: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 979–990. Springer, Heidelberg (2003)
Divina, F., Keijzer, M., Marchiori, E.: A method for handling numerical attributes in GA-based inductive concept learners. In: GECCO 2003: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 898–908. Springer, Heidelberg (2003)
DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 651–656 (1991)
Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based learning classifier system. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1818–1831. Springer, Heidelberg (2003)
Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 59–79. Springer, Heidelberg (2007)
Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html
Martínez Marroquín, E., Vos, C., et al.: Morphological analysis of mammary biopsy images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 943–947 (1996)
Martí, J., Cufí, X., Regincós, J., et al.: Shape-based feature selection for microcalcification evaluation. In: Imaging Conference on Image Processing, vol. 3338, pp. 1215–1224 (1998)
Witten, I.H., Frank, E.: Data Mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco (2000)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)
Brodley, C.: Addressing the selective superiority problem: Automatic algorithm /model class selection (1993)
Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 54–68 (2003)
Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., Forrest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland, Center for the Study of Complex Systems, pp. 111–121 (1999)
Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary Computation Journal 11, 298–336 (2003)
Aguilar, J., Bacardit, J., Divina, F.: Experimental evaluation of discretization schemes for rule induction. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 828–839. Springer, Heidelberg (2004) (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bacardit, J., Garrell, J.M. (2004). Analysis and Improvements of the Adaptive Discretization Intervals Knowledge Representation. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_88
Download citation
DOI: https://doi.org/10.1007/978-3-540-24855-2_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22343-6
Online ISBN: 978-3-540-24855-2
eBook Packages: Springer Book Archive