Abstract
Geometric problems defined by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that, besides fulfilling the geometric constraints, exhibits some additional properties.
Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function. The problem of selecting a given root is known as the Root Identification Problem.
In this paper we present a comparative study of a basic genetic algorithm against the CHC algorithm. Both techniques are based on an automatic search in the space of solutions driven by a set of extra constraints. A number of case studies illustrate the performance of the methods.
Chapter PDF
Similar content being viewed by others
Keywords
References
Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R.: Geometric constraint solver. Computer-Aided Design 27(6), 487–501 (1995)
Bremermann, H.J., Roghson, J., Salaff, S.: Global properties of evolution processes. In: Pattee, H.H., Edelsack, E.A., Fein, L., Callahan, A.B. (eds.) Natural Automata and Useful Simulations, pp. 3–42. Macmillan, Basingstoke (1966)
Brüderlin, B.D.: Rule-Based Geometric Modelling. PhD thesis, Institut für Informatik der ETH Zürich (1988)
Durand, C.: Symbolic and Numerical Techniques for Constraint Solving. PhD thesis, Purdue University, Department of Computer Sciences (December 1998)
Eiben, A.E., Ruttkay, Z.: Constraint-satisfaction problems. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. ch. C5.7, pp. C5.7:1–C5.7:5. Institute of Physics Publishing Ltd and Oxford University Press (1997)
Eshelman, L.J.: The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination. In: Foundations of Genetic Algorithms, pp. 265–283 (1991)
Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence 124, 139–159 (2000)
Forrest, S. (ed.): Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA. Morgan Kaufmann, San Francisco (1993)
Fudos, I., Hoffmann, C.M.: Correctness proof of a geometric constraint solver. International Journal of Computational Geometry & Applications 6(4), 405–420 (1996)
Fudos, I., Hoffmann, C.M.: A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics 16(2), 179–216 (1997)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)
Joan-Arinyo, R., Soto-Riera, A.: Combining geometric and equational geometric constraint solving techniques. In: VII Congreso Español de Informática Gráfica, Eurographics, June 1997, pp. 309–324 (1997)
Joan-Arinyo, R., Soto-Riera, A.: Combining constructive and equational geometric constraint solving techniques. ACM Transactions on Graphics 18(1), 35–55 (1999)
Joan-Arinyo, R., Luzón, M.V., Soto, A.: Constructive geometric constraint solving: a new application of genetic algorithms. In: Parallel Problem Solving from Nature-PPSN VII, vol. 1, pp. 759–768 (2002)
Joan-Arinyo, R., Luzón, M.V., Soto, A.: Genetic algorithms for root multiselection in constructive geometric constraint solving. Computer & Graphics 27, 51–60 (2003)
Kleene, S.C.: Mathematical Logic. John Wiley and Sons, New York (1967)
Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4(4), 331–340 (1970)
Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM Journal on Algebraic and Discrete Methods 3(1), 91–98 (1982)
Luzón, M.V.: Resolución de Restricciones geométricas. Selección de la solución deseada. PhD thesis, Dpto. de Informática. Universidade de Vigo. (September 2001)
Mata, N.: Solving incidence and tangency constraints in 2D. Technical Report LSI-97-3R, Department LiSI, Universitat Politècnica de Catalunya (1997)
Mata, N.: Constructible Geometric Problems with Interval Parameters. PhD thesis, Dept. LSI, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain (2000)
Mendenhall, W., Sincich, T.: Statistics for engineering and the sciences, 4th edn. Prentice-Hall, Englewood Cliffs (1999)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Luzón, M.V., Barreiro, E., Yeguas, E., Joan-Arinyo, R. (2004). GA and CHC. Two Evolutionary Algorithms to Solve the Root Identification Problem in Geometric Constraint Solving. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science - ICCS 2004. ICCS 2004. Lecture Notes in Computer Science, vol 3039. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25944-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-25944-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22129-6
Online ISBN: 978-3-540-25944-2
eBook Packages: Springer Book Archive