Abstract
We define the class of head-cycle free nested logic programs, and its proper subclass of acyclic nested programs, generalising similar classes originally defined for disjunctive logic programs. We then extend several results known for acyclic and head-cycle free disjunctive programs under the stable-model semantics to the nested case. Most notably, we provide a propositional semantics for the program classes under consideration. This generalises different extensions of Fages’ theorem, including a recent result by Erdem and Lifschitz for tight logic programs. We further show that, based on a shifting method, head-cycle free nested programs can be rewritten into normal programs in polynomial time and space, extending a similar technique for head-cycle free disjunctive programs. All this shows that head-cycle free nested programs constitute a subclass of nested programs possessing a lower computational complexity than arbitrary nested programs, providing the polynomial hierarchy does not collapse.
This work was partially supported by the Austrian Science Fund (FWF) under projects Z29-N04 and P15068-INF, by the German Science Foundation (DFG) under grants FOR 375/1 and SCHA 550/6, TP C, as well as by the European Commission under projects FET-2001-37004 WASP and IST-2001-33570 INFOMIX.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1994)
Bidoit, N., Froidevaux, C.: Negation by Default and Unstratifiable Logic Programs. Theoretical Computer Science 78, 85–112 (1991)
Brass, S., Dix, J.: Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation. Journal of Logic Programming 38(3), 167–213 (1999)
Brignoli, G., Costantini, S., D’Antona, O., Provetti, A.: Characterizing and Computing Stable Models of Logic Programs: The Non-stratified Case. In: Proc. of the 2nd International Conference on Information Technology (CIT 1999), pp. 197–201 (1999)
Clark, K.L.: Negation as Failure. In Logic and Databases, pp. 293–322. Plenum, New York (1978)
Dix, J., Gottlob, G., Marek, V.: Reducing Disjunctive to Non-Disjunctive Semantics by Shift-Operations. Fundamenta Informaticae XXVIII(1/2), 87–100 (1996)
Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV System. In: Logic-Based Artificial Intelligence, pp. 79–103. Kluwer, Dordrecht (2000)
Eiter, T., Fink, M., Tompits, H., Woltran, S.: On Eliminating Disjunctions in Stable Logic Programming. In: Proc. KR 2004 (2004) (to appear)
Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propositional Case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)
Erdem, E., Lifschitz, V.: Fages’ Theorem for Programs with Nested Expressions. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 242–254. Springer, Heidelberg (2001)
Erdem, E., Lifschitz, V.: Tight Logic Programs. Theory and Practice of Logic Programming 3(4-5), 499–518 (2003)
Fages, F.: Consistency of Clark’s Completion and Existence of Stable Models. Methods of Logic in Computer Science 1, 51–60 (1994)
Gelfond, M., Lifschitz, V., Przymusinska, H., Truszczyński, M.: Disjunctive Defaults. In: Proc. KR 1991, pp. 230–237. Morgan Kaufmann, San Francisco (1991)
Inoue, K., Sakama, C.: Negation as Failure in the Head. Journal of Logic Programming 35(1), 39–78 (1998)
Janhunen, T.: On the Effect of Default Negation on the Expressiveness of Disjunctive Rules. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 93–106. Springer, Heidelberg (2001)
Konczak, K., Linke, T., Schaub, T.: Graphs and Colorings for Answer Set Programming: Abridged Report. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 127–140. Springer, Heidelberg (2003)
Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)
Lifschitz, V., Tang, L., Turner, H.: Nested Expressions in Logic Programs. Annals ofMathematics and Artificial Intelligence 25(3-4), 369–389 (1999)
Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In: Proc. AAAI 2002, pp. 112–117 (2002)
Linke, T.: Graph Theoretical Characterization and Computation of Answer Sets. In: Proc. IJCAI 2001, pp. 641–645. Morgan Kaufmann, San Francisco (2001)
Linke, T.: Suitable Graphs for Answer Set Programming. In: Proc. ASP 2003. CEUR Workshop Proceedings, vol. 78, pp. 15–28 (2003)
Linke, T., Anger, C., Konczak, K.: More on noMoRe. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 468–480. Springer, Heidelberg (2002)
Lloyd, J., Topor, R.: Making Prolog More Expressive. Journal of Logic Programming 3, 225–240 (1984)
Marek, W., Truszczyński, M.: Autoepistemic Logic. Journal of the ACM 38, 588–619 (1991)
Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 405–420. Springer, Heidelberg (2002)
Pearce, D., Tompits, H., Woltran, S.: Encodings for EquilibriumLogic and Logic Programs with Nested Expressions. In: Proc. EPIA 2001. LNCS, vol. 2285, pp. 306–320. Springer, Heidelberg (2001)
Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138, 181–234 (2002)
Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing 1, 146–160 (1972)
You, J., Yuan, L., Zhang, M.: On the Equivalence Between Answer Sets and Models of Completion for Nested Logic Programs. In: Proc. IJCAI 2003, pp. 859–865 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Linke, T., Tompits, H., Woltran, S. (2004). On Acyclic and Head-Cycle Free Nested Logic Programs. In: Demoen, B., Lifschitz, V. (eds) Logic Programming. ICLP 2004. Lecture Notes in Computer Science, vol 3132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27775-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-27775-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22671-0
Online ISBN: 978-3-540-27775-0
eBook Packages: Springer Book Archive