Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Extensions of Solovay-Reducibility

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

Abstract

A c.e. real x is Solovay reducible (S-reducible) to another c.e. real y if y is at least as difficult to be approximated as x. In this case, y is at least as random as x. Thus, the S-reducibility classifies relative randomness of c.e. reals such that the c.e. random reals are complete in the class of c.e. reals under the S-reducibility. In this paper we investigate extensions of the S-reducibility outside the c.e. reals. We show that the straightforward extension does not behave satisfactorily. Then we introduce two new extensions which coincide with the S-reducibility on the c.e. reals and behave reasonably outside the c.e. reals. Both of these extensions imply the rH-reducibility of Downey, Hirschfeldt and LaForte [6]. At last we show that even under the rH-reducibility the computably approximable random reals cannot be characterized as complete elements of this reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. Journal of Complexity 16(4), 676–690 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calude, C.S., Hertling, P.H.: Computable approximations of reals: an information-theoretic analysis. Fund. Inform. 33(2), 105–120 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chaitin, G.: A theory of program size formally identical to information theory. J. of ACM 22, 329–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, Heidelberg (200) (monograph to be published)

    Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 316–327. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Downey, R.G., Hirschfeldt, D.R., Nies, A.: Randomness, computability, and density. SIAM J. Comput. 31(4), 1169–1183 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kuçera, A., Slaman, T.A.: Randomness and recursive enumerability. SIAM J. Comput. 31(1), 199–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  10. Rettinger, R., Zheng, X.: On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19(5), 672–691 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B.: Monotonically computable real numbers. Math. Log. Quart. 48(3), 459–479 (2002)

    Article  MATH  Google Scholar 

  12. Solovay, R.M.: Draft of a paper (or a series of papers) on chaitin’s work . . . . manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215 (1975)

    Google Scholar 

  13. Turing, M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

    MATH  Google Scholar 

  14. Yu, L., Ding, D.: There is no sw-complete c.e. real. J. of Symbolic Logic (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, X., Rettinger, R. (2004). On the Extensions of Solovay-Reducibility. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics