Abstract
A novel approach to object-based video indexing and retrieval is presented, employing an object segmentation algorithm for the real-time, unsupervised segmentation of compressed image sequences and simple ontologies for retrieval. The segmentation algorithm uses motion information directly extracted from the MPEG-2 compressed stream to create meaningful foreground spatiotemporal objects, while background segmentation is additionally performed using color information. For the resulting objects, MPEG-7 compliant low-level indexing descriptors are extracted and are automatically mapped to appropriate intermediate-level descriptors forming a simple vocabulary termed object ontology. This, combined with a relevance feedback mechanism, allows the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword) and the retrieval of relevant video segments. Experimental results demonstrate the effectiveness of the proposed approach.
This work was supported by the EU project SCHEMA “Network of Excellence in Content-Based Semantic Scene Analysis and Information Retrieval” (IST-2001-32795).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Khatib, W., Day, Y., Ghafoor, A., Berra, P.: Semantic modeling and knowledge representation in multimedia databases. IEEE Trans. on Knowledge and Data Engineering 11, 64–80 (1999)
O’Connor, N., Sav, S., Adamek, T., Mezaris, V., Kompatsiaris, I., Lui, T., Izquierdo, E., Bennstrom, C., Casas, J.: Region and Object Segmentation Algorithms in the Qimera Segmentation Platform. In: Proc. Third Int. Workshop on Content-Based Multimedia Indexing (CBMI 2003) (2003)
Meng, J., Chang, S.F.: Tools for Compressed-Domain Video Indexing and Editing. In: Sethi, I.K., Jain, R.C. (eds.) Proc. SPIE Conf. on Storage and Retrieval for Still Image and Video Databases IV, vol. 2670, pp. 180–191 (1996)
Sahouria, E., Zakhor, A.: Motion Indexing of Video. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 1997), Santa Barbara, CA (1997)
Babu, R., Ramakrishnan, K.: Compressed domain motion segmentation for video object extraction. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3788–3791 (2002)
Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An Ontology Approach to Objectbased Image Retrieval. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 2003), Barcelona, Spain (2003)
Yu, T., Zhang, Y.: Retrieval of video clips using global motion information. Electronics Letters 37, 893–895 (2001)
Favalli, L., Mecocci, A., Moschetti, F.: Object tracking for retrieval applications in MPEG-2. IEEE Trans. on Circuits and Systems for Video Technology 10, 427–432 (2000)
Sikora, T.: The MPEG-7 Visual standard for content description - an overview. IEEE Trans. on Circuits and Systems for Video Technology, special issue on MPEG-7 11, 696–702 (2001)
Berlin, B., Kay, P.: Basic color terms: their universality and evolution. University of California, Berkeley (1969)
Guo, G.D., Jain, A., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. on Neural Networks 13, 811–820 (2002)
Mezaris, V., Kompatsiaris, I., Strintzis, M.: A framework for the efficient segmentation of large-format color images. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 2002), vol. 1, pp. 761–764 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mezaris, V., Strintzis, M.G. (2004). Object Segmentation and Ontologies for MPEG-2 Video Indexing and Retrieval. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds) Image and Video Retrieval. CIVR 2004. Lecture Notes in Computer Science, vol 3115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27814-6_67
Download citation
DOI: https://doi.org/10.1007/978-3-540-27814-6_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22539-3
Online ISBN: 978-3-540-27814-6
eBook Packages: Springer Book Archive