Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Object Segmentation and Ontologies for MPEG-2 Video Indexing and Retrieval

  • Conference paper
Image and Video Retrieval (CIVR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3115))

Included in the following conference series:

Abstract

A novel approach to object-based video indexing and retrieval is presented, employing an object segmentation algorithm for the real-time, unsupervised segmentation of compressed image sequences and simple ontologies for retrieval. The segmentation algorithm uses motion information directly extracted from the MPEG-2 compressed stream to create meaningful foreground spatiotemporal objects, while background segmentation is additionally performed using color information. For the resulting objects, MPEG-7 compliant low-level indexing descriptors are extracted and are automatically mapped to appropriate intermediate-level descriptors forming a simple vocabulary termed object ontology. This, combined with a relevance feedback mechanism, allows the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword) and the retrieval of relevant video segments. Experimental results demonstrate the effectiveness of the proposed approach.

This work was supported by the EU project SCHEMA “Network of Excellence in Content-Based Semantic Scene Analysis and Information Retrieval” (IST-2001-32795).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Khatib, W., Day, Y., Ghafoor, A., Berra, P.: Semantic modeling and knowledge representation in multimedia databases. IEEE Trans. on Knowledge and Data Engineering 11, 64–80 (1999)

    Article  Google Scholar 

  2. O’Connor, N., Sav, S., Adamek, T., Mezaris, V., Kompatsiaris, I., Lui, T., Izquierdo, E., Bennstrom, C., Casas, J.: Region and Object Segmentation Algorithms in the Qimera Segmentation Platform. In: Proc. Third Int. Workshop on Content-Based Multimedia Indexing (CBMI 2003) (2003)

    Google Scholar 

  3. Meng, J., Chang, S.F.: Tools for Compressed-Domain Video Indexing and Editing. In: Sethi, I.K., Jain, R.C. (eds.) Proc. SPIE Conf. on Storage and Retrieval for Still Image and Video Databases IV, vol. 2670, pp. 180–191 (1996)

    Google Scholar 

  4. Sahouria, E., Zakhor, A.: Motion Indexing of Video. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 1997), Santa Barbara, CA (1997)

    Google Scholar 

  5. Babu, R., Ramakrishnan, K.: Compressed domain motion segmentation for video object extraction. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3788–3791 (2002)

    Google Scholar 

  6. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An Ontology Approach to Objectbased Image Retrieval. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 2003), Barcelona, Spain (2003)

    Google Scholar 

  7. Yu, T., Zhang, Y.: Retrieval of video clips using global motion information. Electronics Letters 37, 893–895 (2001)

    Article  Google Scholar 

  8. Favalli, L., Mecocci, A., Moschetti, F.: Object tracking for retrieval applications in MPEG-2. IEEE Trans. on Circuits and Systems for Video Technology 10, 427–432 (2000)

    Article  Google Scholar 

  9. Sikora, T.: The MPEG-7 Visual standard for content description - an overview. IEEE Trans. on Circuits and Systems for Video Technology, special issue on MPEG-7 11, 696–702 (2001)

    Article  Google Scholar 

  10. Berlin, B., Kay, P.: Basic color terms: their universality and evolution. University of California, Berkeley (1969)

    Google Scholar 

  11. Guo, G.D., Jain, A., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. on Neural Networks 13, 811–820 (2002)

    Article  Google Scholar 

  12. Mezaris, V., Kompatsiaris, I., Strintzis, M.: A framework for the efficient segmentation of large-format color images. In: Proc. IEEE Int. Conf. on Image Processing (ICIP 2002), vol. 1, pp. 761–764 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mezaris, V., Strintzis, M.G. (2004). Object Segmentation and Ontologies for MPEG-2 Video Indexing and Retrieval. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds) Image and Video Retrieval. CIVR 2004. Lecture Notes in Computer Science, vol 3115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27814-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27814-6_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22539-3

  • Online ISBN: 978-3-540-27814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics