Abstract
A method is presented to predict phase relationships between coupled phase oscillators. As an illustration of how the method can be applied, a distributed Central Pattern Generator (CPG) model based on amplitude controlled phase oscillators is presented. Representative results of numerical integration of the CPG model are presented to illustrate its excellent properties in terms of transition speeds, robustness and independence on initial conditions. A particularly interesting feature of the CPG is the possibility to switch between different stable gaits by varying a single parameter. These characteristics make the CPG model an interesting solution for the decentralized control of multi-legged robots. The approach is discussed in the more general framework of coupled nonlinear systems, and design tools for nonlinear distributed control schemes applicable to Information Technology and Robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collins, J.J., Richmond, S.A.: Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics 71(5), 375–385 (1994)
Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Science 1(1), 4–27 (1980)
Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. The International Journal of Robotics Research 3-4, 187–202 (2003)
Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Reviews of Modern Physics 70(1), 223–287 (1998)
Grillner, S.: Control of locomotion in bipeds, tetrapods and fish. In: Brooks, V.B. (ed.) Handbook of Physiology, The Nervous System, 2, Motor Control, pp. 1179–1236. American Physiology Society, Bethesda (1981)
Grillner, S.: Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696), 143–149 (1985)
Haken, H.: Advanced Synergetics. Instability Hierarchies of Self-Organization Systems and Devices, 2nd edn. Springer Series in Synergetics, vol. 20. Springer, Heidelberg (1987)
Kelso, J.A.S., Scholz, J.P., Schöner, G.: Nonequilibrium phase transitions in coordinated biological motion: critical uctuations. Physics Letters A 118(6), 279–284 (1986)
Kelso, J.A.S., Scholz, J.P., Schöner, G.: Dynamics governs switching among patterns of coordination in biological movement. Physics Letters A 134(1), 8–12 (1988)
Landau, L.D., Lifshitz, E.M.: Statistical Physics, volume 5 of Course of theoretical physics, vol. 5. Pergamon Press, London (1959)
The MathWorks Inc. Matlab web site, http://www.mathworks.com
Nekorkin, V.I., Velarde, M.G. (eds.): Synergetic Phenomena in Active Latices. Springer Series in Synergetics, vol. 79. Springer, Heidelberg (2002)
Noble, D.: Modeling the heart - from genes to cells to the whole organ. Science 295, 1678–1682 (2002)
Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with Chaos. Self-Organized Hierarchical Complexity in Semiconductor Experiments. Springer, Heidelberg (1992)
Pikovsky, A., Rosenblum, R., Kurths, J.: Synchronization, A universal concept in nonlinear sciences. Cambridge Nonlinear Science Series, vol. 12. Cambridge University Press, Cambridge (2001)
Schöner, G., Jiang, W.Y., Kelso, J.A.S.: A synergetic theory of quadrupedal gaits and gait transitions. Journal of theoretical Biology 142, 359–391 (1990)
Schreiber, I., Marek, M.: Dynamics of Oscillatory Chemical Systems. In: Modeling the Dynamics of Biological Systems. Springer Series in Synergetics, vol. 65, Springer, Heidelberg (1995)
Shik, M.L., Severin, F.V., Orlovsky, G.N.: Control of walking by means of electrical stimulation of the mid-brain. Biophysics 11, 756–765 (1966)
Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biological Cybernetics 73(2), 97–111 (1995)
Tsuchiya, K., Aoi, S., Tsujita, K.: Locomotion control of a multi-legged locomotion robot using oscillators. In: 2002 IEEE Intl. Conf. SMC, vol. 4 (2002)
Yuasa, H., Ito, M.: Coordination of many oscillators and generation of locomotory patterns. Biological Cybernetics 63, 177–184 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchli, J., Ijspeert, A.J. (2004). Distributed Central Pattern Generator Model for Robotics Application Based on Phase Sensitivity Analysis. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-27835-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23339-8
Online ISBN: 978-3-540-27835-1
eBook Packages: Springer Book Archive