Abstract
This paper explores how to extend the spectral analysis of graphs to the case where the nodes and edges are attributed. To do this we introduce a complex Hermitian variant of the Laplacian matrix. Our spectral representation is based on the eigendecomposition of the resulting Hermitian property matrix. The eigenvalues of the matrix are real while the eigenvectors are complex. We show how to use symmetric polynomials to construct permutation invariants from the elements of the resulting complex spectral matrix. We construct pattern vectors from the resulting invariants, and use them to embed the graphs in a low dimensional pattern space using a number of well-known techniques including principal components analysis, linear discriminant analysis and multidimensional scaling.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Chung, F.R.K.: Spectral Graph Theory. American Mathmatical Society Ed., CBMS series 92 (1997)
Umeyama, S.: An eigen decomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 695–703 (1988)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral Embedding of Graphs. Pattern Recognition 36(10), 2213–2230 (2003)
Mohar, B.: Laplace Eigenvalues of Graphs - A survey. Discrete Mathematics 109, 171–183 (1992)
Biggs, N.: Algebraic Graph Theory, CUP
Huet, B., Hancock, E.R.: Line Pattern Retrieval Using Relational Histograms. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1363–1370 (1999)
Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock Graphs and Shape Matching. International Journal of Computer Vision 35(1), 13–32 (1999)
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Torsello, A., Hancock, E.R.: A skeletal measure of 2D shape similarity. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 594–605. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wilson, R.C., Hancock, E.R. (2004). Spectral Analysis of Complex Laplacian Matrices. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2004. Lecture Notes in Computer Science, vol 3138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27868-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-27868-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22570-6
Online ISBN: 978-3-540-27868-9
eBook Packages: Springer Book Archive