Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Universal Test for Quantum One-Way Permutations

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

The next bit test was introduced by Blum and Micali and proved by Yao to be a universal test for cryptographic pseudorandom generators. On the other hand, no universal test for the cryptographic one-wayness of functions (or permutations) is known, though the existence of cryptographic pseudorandom generators is equivalent to that of cryptographic one-way functions. In the quantum computation model, Kashefi, Nishimura and Vedral gave a sufficient condition of (cryptographic) quantum one-way permutations and conjectured that the condition would be necessary. In this paper, we relax their sufficient condition and give a new condition that is necessary and sufficient for quantum one-way permutations. Our condition can be regarded as a universal test for quantum one-way permutations, since our condition is described as a collection of stepwise tests similar to the next bit test for pseudorandom generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum computing. SIAM J. Comp. 26(5), 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comp. 13(4), 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Lomonaco Jr., S.J., Brandt, H.E. (eds.) Quantum Computation and Quantum Information, AMS Contemp. Math., vol. 305 (2002)

    Google Scholar 

  5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comp. Sys. Sci. 18(2), 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proc. 21st ACM Symp. Theory of Computing, pp. 25–32 (1989)

    Google Scholar 

  8. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th ACM Symp. Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  10. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comp. 28(4), 1364–1396 (1999)

    Article  MATH  Google Scholar 

  11. Kashefi, E., Nishimura, H., Vedral, V.: On quantum one-way permutations. Quantum Info. Comp. 2(5), 379–398 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Schrift, A.W., Shamir, A.: Universal tests for nonuniform distributions. J. Crypt. 6(3), 119–133 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd IEEE Symp. Foundations of Computer Science, pp. 80–91 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawachi, A., Kobayashi, H., Koshiba, T., Putra, R.H. (2004). Universal Test for Quantum One-Way Permutations. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics