Abstract
We study the expressiveness of finite message-passing automata with a priori unbounded FIFO channels and show them to capture exactly the class of MSC languages that are definable in existential monadic second-order logic interpreted over MSCs. Moreover, we prove the monadic quantifier-alternation hierarchy over MSCs to be infinite and conclude that the class of MSC languages accepted by message-passing automata is not closed under complement. Furthermore, we show that satisfiability for (existential) monadic seconder-order logic over MSCs is undecidable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In: 22nd International Conference on Software Engineering, ACM, New York (2000)
Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 114. Springer, Heidelberg (1999)
Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2) (1983)
Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. Theoretical Computer Science 247(1–2) (2000)
Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level mSCs: Model-checking and realizability. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 657. Springer, Heidelberg (2002)
Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Regular collections of message sequence charts. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 405. Springer, Heidelberg (2000)
ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC 1999). Technical report, ITU-TS, Geneva (1999)
Kuske, D.: Asynchronous cellular automata and asynchronous automata for pomsets. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 517–532. Springer, Heidelberg (1998)
Kuske, D.: Regular sets of infinite message sequence charts. Information and Computation 187, 80–109 (2003)
Madhusudan, P.: Reasoning about sequential and branching behaviours of message sequence graphs. In: ICALP 2000. LNCS, vol. 2076. Springer, Heidelberg (2001)
Matz, O., Thomas, W.: The monadic quantifier alternation hierarchy over graphs is infinite. In: LICS 1997, IEEE Computer Society Press, Los Alamitos (1997)
Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 523. Springer, Heidelberg (2002)
Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing distributed finitestate systems from mSCs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 521. Springer, Heidelberg (2000)
Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672. Springer, Heidelberg (1999)
Thomas, W.: Elements of an automata theory over partial orders. In: POMIV 1996. DIMACS, vol. 29. AMS, Providence, RI (1996)
Thomas, W.: Automata theory on trees and partial orders. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214. Springer, Heidelberg (1997)
Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3. Springer, Berlin (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bollig, B., Leucker, M. (2004). Message-Passing Automata Are Expressively Equivalent to EMSO Logic. In: Gardner, P., Yoshida, N. (eds) CONCUR 2004 - Concurrency Theory. CONCUR 2004. Lecture Notes in Computer Science, vol 3170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28644-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-28644-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22940-7
Online ISBN: 978-3-540-28644-8
eBook Packages: Springer Book Archive