Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Learning Method for Robust Support Vector Machines

  • Conference paper
Advances in Neural Networks – ISNN 2004 (ISNN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3173))

Included in the following conference series:

  • 1060 Accesses

Abstract

We propose an innovative learning algorithm for a support vector machine to be robust. As learning patterns it uses not only the prescribed learning patterns but also their neighbour patterns. The size of the proposed optimization problem to be solved is the same as the original one. Many simulations show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  2. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  3. Schölkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods - Support Vector Learning. The MIT Press, Cambridge (1999)

    Google Scholar 

  4. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  5. Buhot, A., Gordon, M.B.: Robust Learning and Generalization with Support Vector Machines. J. Phys. A: Math. Gen. 34, 4377–4388 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lanckriet, G.R.G., Ghaoui, L.E., Ghaoui, L.E.l., Bhattacharyya, C., Jordan, M.I.: A Robust Minimax Approach to Classification. Journal of Machine Learning Research 3, 555–582 (2002)

    Article  Google Scholar 

  7. Joachims, T.: Estimating the Generalization Performance of an SVM Efficiently. In: Proceedings of the International Conference on Machine Learning, San Francisco (2000)

    Google Scholar 

  8. Navarrete, P., Ruiz del Solar, J.: On the Generalization of Kernel Machines. Pattern Recognition with Support Vector Machines 2388, 24–39 (2002)

    Article  Google Scholar 

  9. Shawe-Taylor, J., Cristianini, N.: Robust Bounds on the Generalization from the Margin Distribution. NeuroCOLT Technical Report NC-TR-98-029, Royal Holloway College, University of London, UK (1998)

    Google Scholar 

  10. Xia, Y.S., Wang, J.: A One-layer Recurrent Neural Network for Support Vector Machine Learning. IEEE Transactions on Systems, Man and Cybernetics-Part B, 1261–1269 (2004)

    Google Scholar 

  11. Schölkopf, B., Burges, C.J.C., Vapnik, V.N.: Extracting Support Data for a Given Task. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings, First International Conference on Knowledge Discovery & Data Mining, AAAI Press, Menlo Park (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Takahashi, N., Nishi, T. (2004). A Learning Method for Robust Support Vector Machines. In: Yin, FL., Wang, J., Guo, C. (eds) Advances in Neural Networks – ISNN 2004. ISNN 2004. Lecture Notes in Computer Science, vol 3173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28647-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28647-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22841-7

  • Online ISBN: 978-3-540-28647-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics