Abstract
Nonnegative matrix factorization (NMF) is a powerful feature extraction method for nonnegative data. This paper applies NMF to feature extraction for Electroencephalogram (EEG) signal classification. The basic idea is to decompose the magnitude spectra of EEG signals from six channels via NMF. Primary experiments on signals from one subject performing two tasks show high classification accuracy rate based on linear discriminant analysis. Our best results are close to 98% when training data and testing data from the same day, and 82% when training data and testing data from different days.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)
Jolliffe, I.T.: Principal component analysis, 2nd edn. Springer, New York (2002)
Lee, D.D., Seung, H.S.: Learning the parts of objects with nonnegative matrix factorization. Nature 401, 788–791 (1999)
Lee, D.D., Seung, H.S.: Algorithms for nonnegative matrix factorization. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, MIT Press, Cambridge (2000)
Kawamoto, T., Hotta, K., Mishima, T., Fujiki, J., Tanaka, M., Kurita, T.: Estimation of Single Tones from Chord Sounds Using Non-Negative Matrix Factorization. Neural Network World 3, 429–436 (2000)
Vinokourov, A.: Why Nonnegative Matrix Factorization Works Well For Text Information Retrieval, http://citeseer.nj.nec.com/458322.html
Tsuge, S., Shishibori, M., Kuroiwa, S., Kita, K.: Dimensionality reduction using non-negative matrix factorization for information retrieval. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 960–965 (2001)
Seppänen, J.K., Hollmén, J., Bingham, E., Mannila, H.: Nonnegative matrix factorization on gene expression data. In: Bioinformatics 2002, poster 49 (2002)
Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic music transcription. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 177–180 (2003)
Pauca, P., Shahnaz, F., Berry, M., Plemmons, R.: Text Mining using Nonnegative Matrix Factorizations. In: Proc. SIAM Inter. Conf. on Data Mining (2003)
Liu, W.X., Zheng, N.N., Li, X.: Review on Nonnegative Matrix Factorization. Technical report, Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University (2004)
Anderson, C., Devulapalli, S., Stolz, E.: EEG Signal Classification with Different Signal Representations. In: Girosi, F., Makhoul, J., Manolakos, E., Wilson, E. (eds.) Neural Networks for Signal Processing V, pp. 475–483. IEEE Service Center, Piscataway (1995)
Vaughan, T.M., Heetderks, W.J., Trejo, L.J., Rymer, W.Z., Weinrich, M., Moore, M.M., Kübler, A., Dobkin, B.H., Birbaumer, N., Donchin, E., Wolpaw, E.W., Wolpaw, J.R.: Brain-computer interface technology: A review of the Second International Meeting. IEEE Transactions on Neural Systems & Rehabilitation Engineering 11, 94–109 (2003)
Anderson, C.W., Kirby, M.: EEG Subspace Representations and Feature Selection for Brain-Computer Interfaces. In: Proceedings of the 1st IEEE Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction, CVPRHCI (2003)
Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of Linear and Nonlinear Methods for EEG Signal Classification. IEEE Transactions on Neural Systems and Rehabilitative Engineering 11, 141–144 (2003)
Xu, W., Liu, X., Gong, Y.H.: Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 267–273 (2003)
Plumbley, M.D., Abdallah, S.A., Bello, J.P., Davies, M.E., Monti, G., Sandler, M.B.: Automatic music transcription and audio source separation. Cybernetics and System 33, 603–627 (2002)
Plumbley, M.D.: Algorithms for non-negative independent component analysis. IEEE Transactions on Neural Networks 14, 534–543 (2003)
Lu, J.J., Xu, B.W., Yang, H.J.: Matrix dimensionality reduction for mining web logs. In: Proceedings of IEEEWIC International Conference on Web Intelligence, pp. 405–408 (2003)
Xu, B.W., Lu, J.J., Huang, G.S.: A constrained non-negative matrix factorization in information retrieval. In: IEEE International Conference on Information Reuse and Integration, pp. 273–277 (2003)
Kim, P.: Understanding Subsystems in Biology through Dimensionality Reduction, Graph Partitioning and Analytical Modeling. Phd thesis (2003)
Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 101, 4164–4169 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, W., Zheng, N., Li, X. (2004). Nonnegative Matrix Factorization for EEG Signal Classification. In: Yin, FL., Wang, J., Guo, C. (eds) Advances in Neural Networks - ISNN 2004. ISNN 2004. Lecture Notes in Computer Science, vol 3174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28648-6_75
Download citation
DOI: https://doi.org/10.1007/978-3-540-28648-6_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22843-1
Online ISBN: 978-3-540-28648-6
eBook Packages: Springer Book Archive