Abstract
We describe an approach to fill missing values in decision trees during classification. This approach is derived from the ordered attribute trees method, propo sed by Lobo and Numao in 2000, which builds a decision tree for each attribute and uses these trees to fill the missing attribute values. It is based on the Mutual Information between the attributes and the class. Our approach primarily extends this method on three points: 1) it does not impose an order of construction; 2) a probability distribution is used for each missing attribute instead of the most pro bable value; 3) the result of the classification process is a probability distribution i nstead of a single class. Moreover, our method takes the dependence between attributes into account. We present Lobo’s approach and our extensions, we compare them, and we discuss some perspectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, Department of Information and Computer Science. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks (1984)
Hawarah, L., Simonet, A., Simonet, M.: Une approche probabiliste pour le classement d’objets incomplets dans un arbre de décision, janvier, Clermont-Ferrand, EGC (2004)
Kononenko, I., Bratko, I., Roskar, E.: Experiments in Automatic Learning of Medical Diagnostic Rules, Technical Report, Jozef Stefan Institute, Ljubljana, Yugoslavia (1984)
Friedman, J.H., Kohavi, R., Yun, Y.: Lazy Decision Trees. In: Proc. 13th Nat’l. Conf. Artificial Intelligence (1996)
Liu, W.Z., White, A.P., Thompson, S.G., Bramer, M.A.: Techniques for Dealing with Missing Values in Classification. In: Liu, X., Cohen, P., Berthold, M. (eds.) Advances on Intelligent Data Analysis, Springer, Heidelberg (1997)
Lobo, O.O., Numao, M.: Ordered estimation of missing values. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (1999)
Lobo, O.O., Numao, M.: Ordered estimation of missing values for propositional learning. Japanese Society for Artificial Intelligence, JSAI 15(1) (2000)
Lobo, O.O., Numao, M.: Suitable Domains for Using Ordered Attribute Trees to Impute Missing Values. IEICE TRANS. INF. & SYST. E84-D(2) (February 2001)
Quinlan, J.R.: Unknown attribute values in induction. In: Proc. Sixth International Machine Learning Workshop, Morgan Kaufmann, San Francisco (1989)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Quinlan, J.R.: Probabilistic decision trees. In: Kodratoff, Y. (ed.) Machine Learning: an Artificial Intelligence Approach, vol. 3, pp. 140–152. Morgan Kaufmann, San Mateo (1990)
Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Ragel, A., Cremilleux, B.: MVC A Preprocessing Method to Deal With Missing Values, knowledge-based systems, pp. 285–291 (1999)
Shannon, C.E., Weaver, W.: Théorie Mathématique de la communication, les classiques des sciences humaines, tr. fr. CEPL, Paris (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hawarah, L., Simonet, A., Simonet, M. (2004). A Probabilistic Approach to Classify Incomplete Objects Using Decision Trees. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds) Database and Expert Systems Applications. DEXA 2004. Lecture Notes in Computer Science, vol 3180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30075-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-30075-5_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22936-0
Online ISBN: 978-3-540-30075-5
eBook Packages: Springer Book Archive