Abstract
We present a new algorithm for non-unitary approximate joint diagonalization (AJD), based on a “natural gradient”-type multi-plicative update of the diagonalizing matrix, complemented by step-size optimization at each iteration. The advantages of the new algorithm over existing non-unitary AJD algorithms are in the ability to accommodate non-positive-definite matrices (compared to Pham’s algorithm), in the low computational load per iteration (compared to Yeredor’s AC-DC algorithm), and in the theoretically guaranteed convergence to a true (possibly local) minimum (compared to Ziehe et al.’s FFDiag algorithm).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE - Proceedings -F 140, 362–370 (1993)
Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)
Ziehe, A., Nolte, G., Curio, G., Müller, K.R.: OFI: Optimal filtering algorithms for source separation. In: Proc. ICA 2000, Helsinki, Finland, pp. 127–132 (2000)
Belouchrani, A., Amin, M.G.: Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Processing 46, 2888–2897 (1998)
Yeredor, A.: Blind source separation via the second characteristic function. Signal Processing 80, 897–902 (2000)
Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41, 1–24 (2001)
Rahbar, K., Reilly, J.P., Manton, J.H.: Blind identification of MIMO FIR systems driven by quasistationary sources using second-order statistics: A frequency domain approach. IEEE Trans. Signal Processing 52, 406–417 (2004)
Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications 17, 161–164 (1996)
Cardoso, J.F.: On the performance of orthogonal source separation algorithms. In: Proceedings of EUSIPCO 1994, pp. 776–779 (1994)
Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Processing 50, 1545–1553 (2002)
Ziehe, A., Laskov, P., Müller, K.R., Nolte, G.: A linear least-squares algorithm for joint diagonalization. In: Proceedings ICA 2003, pp. 469–474 (2003)
Pham, D.T.: Joint approximate diagonalization of positive definite matrices. SIAM J. on Matrix Anal. and Appl. 22, 1136–1152 (2001)
Amari, S.I., Douglas, S.: Why natural gradient. In: ICASSP 1998, vol. 2, pp. 1213–1216 (1998)
Joho, M., Mathis, H.: Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation. In: Proc. of IEEE Sensor Array and Multichannel Signal Processing Workshop SAM, pp. 273–277 (2002)
Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yeredor, A., Ziehe, A., Müller, KR. (2004). Approximate Joint Diagonalization Using a Natural Gradient Approach. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive