Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximate Joint Diagonalization Using a Natural Gradient Approach

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

We present a new algorithm for non-unitary approximate joint diagonalization (AJD), based on a “natural gradient”-type multi-plicative update of the diagonalizing matrix, complemented by step-size optimization at each iteration. The advantages of the new algorithm over existing non-unitary AJD algorithms are in the ability to accommodate non-positive-definite matrices (compared to Pham’s algorithm), in the low computational load per iteration (compared to Yeredor’s AC-DC algorithm), and in the theoretically guaranteed convergence to a true (possibly local) minimum (compared to Ziehe et al.’s FFDiag algorithm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE - Proceedings -F 140, 362–370 (1993)

    Google Scholar 

  2. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)

    Article  Google Scholar 

  3. Ziehe, A., Nolte, G., Curio, G., Müller, K.R.: OFI: Optimal filtering algorithms for source separation. In: Proc. ICA 2000, Helsinki, Finland, pp. 127–132 (2000)

    Google Scholar 

  4. Belouchrani, A., Amin, M.G.: Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Processing 46, 2888–2897 (1998)

    Article  Google Scholar 

  5. Yeredor, A.: Blind source separation via the second characteristic function. Signal Processing 80, 897–902 (2000)

    Article  Google Scholar 

  6. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41, 1–24 (2001)

    Article  Google Scholar 

  7. Rahbar, K., Reilly, J.P., Manton, J.H.: Blind identification of MIMO FIR systems driven by quasistationary sources using second-order statistics: A frequency domain approach. IEEE Trans. Signal Processing 52, 406–417 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications 17, 161–164 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cardoso, J.F.: On the performance of orthogonal source separation algorithms. In: Proceedings of EUSIPCO 1994, pp. 776–779 (1994)

    Google Scholar 

  10. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Processing 50, 1545–1553 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ziehe, A., Laskov, P., Müller, K.R., Nolte, G.: A linear least-squares algorithm for joint diagonalization. In: Proceedings ICA 2003, pp. 469–474 (2003)

    Google Scholar 

  12. Pham, D.T.: Joint approximate diagonalization of positive definite matrices. SIAM J. on Matrix Anal. and Appl. 22, 1136–1152 (2001)

    Article  MathSciNet  Google Scholar 

  13. Amari, S.I., Douglas, S.: Why natural gradient. In: ICASSP 1998, vol. 2, pp. 1213–1216 (1998)

    Google Scholar 

  14. Joho, M., Mathis, H.: Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation. In: Proc. of IEEE Sensor Array and Multichannel Signal Processing Workshop SAM, pp. 273–277 (2002)

    Google Scholar 

  15. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yeredor, A., Ziehe, A., Müller, KR. (2004). Approximate Joint Diagonalization Using a Natural Gradient Approach. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics