Abstract
This paper presents a method for solving the permutation problem of frequency domain blind source separation (BSS) when the number of source signals is large, and the potential source locations are omnidirectional. We propose a combination of small and large spacing sensor pairs with various axis directions in order to obtain proper geometric information for solving the permutation problem. Experimental results in a room (reverberation time T R=130 ms) with eight microphones show that the proposed method can separate a mixture of six speech signals that come from various directions, even when two of them come from the same direction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Matsuoka, K., Ohba, Y., Toyota, Y., Nakashima, S.: Blind separation for convolutive mixture of many voices. In: Proc. IWAENC 2003, pp. 279–282 (2003)
Kurita, S., Saruwatari, H., Kajita, S., Takeda, K., Itakura, F.: Evaluation of blind signal separation method using directivity pattern under reverberant conditions. In: Proc. ICASSP 2000, pp. 3140–3143 (2000)
Ikram, M.Z., Morgan, D.R.: A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. In: Proc. ICASSP 2000, pp. 881–884 (2002)
Parra, L.C., Alvino, C.V.: Geometric source separation: Merging convolutive source separation with geometric beamforming. IEEE Trans. Speech Audio Processing 10, 352–362 (2002)
Soon, V.C., Tong, L., Huang, Y.F., Liu, R.: A robust method for wideband signal separation. In: Proc. ISCAS 1993, pp. 703–706 (1993)
Asano, F., Ikeda, S., Ogawa, M., Asoh, H., Kitawaki, N.: A combined approach of array processing and independent component analysis for blind separation of acoustic signals. In: Proc. ICASSP 2001, pp. 2729–2732 (2001)
Sawada, H., Muaki, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech Audio Processing 12 (2004)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)
Matsuoka, K., Nakashima, S.: Minimal distortion principle for blind source separation. In: Proc. ICA 2001, pp. 722–727 (2001)
Winter, S., Sawada, H., Makino, S.: Geometrical understanding of the PCA subspace method for overdetermined blind source separation. In: Proc. ICASSP 2003, vol. 5, pp. 769–772 (2003)
Mukai, R., Sawada, H., Araki, S., Makino, S.: Near-field frequency domain blind source separation for convolutive mixtures. In: Proc. ICASSP 2004 (2004)
Sawada, H., Mukai, R., de la Kethulle, S., Araki, S., Makino, S.: Spectral smoothing for frequency-domain blind source separation. In: Proc. IWAENC 2003, pp. 311–314 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mukai, R., Sawada, H., Araki, S., Makino, S. (2004). Frequency Domain Blind Source Separation for Many Speech Signals. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_59
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_59
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive