Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Frequency Domain Blind Source Separation for Many Speech Signals

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1430 Accesses

Abstract

This paper presents a method for solving the permutation problem of frequency domain blind source separation (BSS) when the number of source signals is large, and the potential source locations are omnidirectional. We propose a combination of small and large spacing sensor pairs with various axis directions in order to obtain proper geometric information for solving the permutation problem. Experimental results in a room (reverberation time T R=130 ms) with eight microphones show that the proposed method can separate a mixture of six speech signals that come from various directions, even when two of them come from the same direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matsuoka, K., Ohba, Y., Toyota, Y., Nakashima, S.: Blind separation for convolutive mixture of many voices. In: Proc. IWAENC 2003, pp. 279–282 (2003)

    Google Scholar 

  2. Kurita, S., Saruwatari, H., Kajita, S., Takeda, K., Itakura, F.: Evaluation of blind signal separation method using directivity pattern under reverberant conditions. In: Proc. ICASSP 2000, pp. 3140–3143 (2000)

    Google Scholar 

  3. Ikram, M.Z., Morgan, D.R.: A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. In: Proc. ICASSP 2000, pp. 881–884 (2002)

    Google Scholar 

  4. Parra, L.C., Alvino, C.V.: Geometric source separation: Merging convolutive source separation with geometric beamforming. IEEE Trans. Speech Audio Processing 10, 352–362 (2002)

    Article  Google Scholar 

  5. Soon, V.C., Tong, L., Huang, Y.F., Liu, R.: A robust method for wideband signal separation. In: Proc. ISCAS 1993, pp. 703–706 (1993)

    Google Scholar 

  6. Asano, F., Ikeda, S., Ogawa, M., Asoh, H., Kitawaki, N.: A combined approach of array processing and independent component analysis for blind separation of acoustic signals. In: Proc. ICASSP 2001, pp. 2729–2732 (2001)

    Google Scholar 

  7. Sawada, H., Muaki, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech Audio Processing 12 (2004)

    Google Scholar 

  8. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)

    Book  Google Scholar 

  9. Matsuoka, K., Nakashima, S.: Minimal distortion principle for blind source separation. In: Proc. ICA 2001, pp. 722–727 (2001)

    Google Scholar 

  10. Winter, S., Sawada, H., Makino, S.: Geometrical understanding of the PCA subspace method for overdetermined blind source separation. In: Proc. ICASSP 2003, vol. 5, pp. 769–772 (2003)

    Google Scholar 

  11. Mukai, R., Sawada, H., Araki, S., Makino, S.: Near-field frequency domain blind source separation for convolutive mixtures. In: Proc. ICASSP 2004 (2004)

    Google Scholar 

  12. Sawada, H., Mukai, R., de la Kethulle, S., Araki, S., Makino, S.: Spectral smoothing for frequency-domain blind source separation. In: Proc. IWAENC 2003, pp. 311–314 (2003)

    Google Scholar 

  13. http://www.kecl.ntt.co.jp/icl/signal/mukai/demo/ica2004/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mukai, R., Sawada, H., Araki, S., Makino, S. (2004). Frequency Domain Blind Source Separation for Many Speech Signals. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics