Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Content-Based Image Retrieval Using Multiple Representations

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Abstract

Many different approaches for content-based image retrieval have been proposed in the literature. Successful approaches consider not only simple features like color, but also take the structural relationship between objects into account. In this paper we describe two models for image representation which integrate structural features and content features in a tree or a graph structure. The effectiveness of this two approaches is evaluated with real world data, using clustering as means for evaluation. Furthermore, we show that combining those two models can further enhance the retrieval accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Flickner, M., Swahney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The QBIC system. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  2. Mehtre, B., Kankanhalli, M., Lee, W.: Shape measures for content based image retrieval: A comparison. Information Processing Management 33, 319–337 (1997)

    Article  Google Scholar 

  3. Cullen, J., Hull, J., Hart, P.: Document image database retrieval and browsing using texture analysis. In: Proc. 4th Int. Conf. Document Analysis and Recognition, pp. 718–721 (1997)

    Google Scholar 

  4. Fuh, C.S., Cho, S.W., Essig, K.: Hierarchical color image region segmentation and shape extraction. IEEE Transactions on Image Processing 9, 156–163 (2000)

    Article  Google Scholar 

  5. Tagare, H., Vos, F., Jaffe, C., Duncan, J.: Arrangement - a spatial relation between parts for evaluating similarity of tomographic section. IEEE Trans. PAMI 17, 880–893 (1995)

    Google Scholar 

  6. Smeulders, A.W.M., Worring, M.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22, 1349–1380 (2000)

    Google Scholar 

  7. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  8. Wagner, R.A., Fisher, M.J.: The string-to-string correction problem. Journal of the ACM 21, 168–173 (1974)

    Article  MATH  Google Scholar 

  9. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Information Processing Letters 42, 133–139 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected acyclic graphs. International Journal of Foundations of Computer Science 7, 43–57 (1996)

    Article  MATH  Google Scholar 

  11. Wang, J.T.L., Zhang, K., Chang, G., Shasha, D.: Finding approximate patterns in undirected acyclic graphs. Pattern Recognition 35, 473–483 (2002)

    Article  MATH  Google Scholar 

  12. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In: Proc. 5th Int. Workshop on the Web and Databases (WebDB 2002), Madison, Wisconsin, USA, pp. 61–66 (2000)

    Google Scholar 

  13. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proc. 8th Int. Conf. on Computer Vision (ICCV 2001), Vancouver, BC, Canada. 1, pp. 755–762 (2001)

    Google Scholar 

  14. Kailing, K., Kriegel, H.P., Schönauer, S., Seidl, T.: Efficient Similarity Search for Hierarchical Data in Large Databases. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Huet, B., Cross, A., Hancock, E.: Shape retrieval by inexact graph matching. In: Proc. IEEE Int. Conf. on Multimedia Computing Systems. 2, pp. 40–44 (1999)

    Google Scholar 

  16. Kubicka, E., Kubicki, G., Vakalis, I.: Using graph distance in object recognition. In: Proc. ACM Computer Science Conference, pp. 43–48 (1990)

    Google Scholar 

  17. Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. PAMI 19, 775–779 (1997)

    Google Scholar 

  18. Kriegel, H.P., Schönauer, S.: Similarity search in structured data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 309–319. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Kriegel, H.P., Kröger, P., Mashael, Z., Pfeifle, M., Pötke, M., Seidl, T.: Effective Similarity Search on Voxelized CAD Objects. In: Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA 2003), Kyoto, Japan (2003)

    Google Scholar 

  20. Kailing, K., Kriegel, H.P., Pryakhin, A., Schubert, M.: Clustering multi-represented objects with noise. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd Int. Conf. KDD., pp. 226–231 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kailing, K., Kriegel, HP., Schönauer, S. (2004). Content-Based Image Retrieval Using Multiple Representations. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_130

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics