Abstract
Many different approaches for content-based image retrieval have been proposed in the literature. Successful approaches consider not only simple features like color, but also take the structural relationship between objects into account. In this paper we describe two models for image representation which integrate structural features and content features in a tree or a graph structure. The effectiveness of this two approaches is evaluated with real world data, using clustering as means for evaluation. Furthermore, we show that combining those two models can further enhance the retrieval accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Flickner, M., Swahney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The QBIC system. IEEE Computer 28(9), 23–32 (1995)
Mehtre, B., Kankanhalli, M., Lee, W.: Shape measures for content based image retrieval: A comparison. Information Processing Management 33, 319–337 (1997)
Cullen, J., Hull, J., Hart, P.: Document image database retrieval and browsing using texture analysis. In: Proc. 4th Int. Conf. Document Analysis and Recognition, pp. 718–721 (1997)
Fuh, C.S., Cho, S.W., Essig, K.: Hierarchical color image region segmentation and shape extraction. IEEE Transactions on Image Processing 9, 156–163 (2000)
Tagare, H., Vos, F., Jaffe, C., Duncan, J.: Arrangement - a spatial relation between parts for evaluating similarity of tomographic section. IEEE Trans. PAMI 17, 880–893 (1995)
Smeulders, A.W.M., Worring, M.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22, 1349–1380 (2000)
Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics-Doklady 10, 707–710 (1966)
Wagner, R.A., Fisher, M.J.: The string-to-string correction problem. Journal of the ACM 21, 168–173 (1974)
Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Information Processing Letters 42, 133–139 (1992)
Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected acyclic graphs. International Journal of Foundations of Computer Science 7, 43–57 (1996)
Wang, J.T.L., Zhang, K., Chang, G., Shasha, D.: Finding approximate patterns in undirected acyclic graphs. Pattern Recognition 35, 473–483 (2002)
Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In: Proc. 5th Int. Workshop on the Web and Databases (WebDB 2002), Madison, Wisconsin, USA, pp. 61–66 (2000)
Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proc. 8th Int. Conf. on Computer Vision (ICCV 2001), Vancouver, BC, Canada. 1, pp. 755–762 (2001)
Kailing, K., Kriegel, H.P., Schönauer, S., Seidl, T.: Efficient Similarity Search for Hierarchical Data in Large Databases. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)
Huet, B., Cross, A., Hancock, E.: Shape retrieval by inexact graph matching. In: Proc. IEEE Int. Conf. on Multimedia Computing Systems. 2, pp. 40–44 (1999)
Kubicka, E., Kubicki, G., Vakalis, I.: Using graph distance in object recognition. In: Proc. ACM Computer Science Conference, pp. 43–48 (1990)
Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. PAMI 19, 775–779 (1997)
Kriegel, H.P., Schönauer, S.: Similarity search in structured data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 309–319. Springer, Heidelberg (2003)
Kriegel, H.P., Kröger, P., Mashael, Z., Pfeifle, M., Pötke, M., Seidl, T.: Effective Similarity Search on Voxelized CAD Objects. In: Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA 2003), Kyoto, Japan (2003)
Kailing, K., Kriegel, H.P., Pryakhin, A., Schubert, M.: Clustering multi-represented objects with noise. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, Springer, Heidelberg (2004)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd Int. Conf. KDD., pp. 226–231 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kailing, K., Kriegel, HP., Schönauer, S. (2004). Content-Based Image Retrieval Using Multiple Representations. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_130
Download citation
DOI: https://doi.org/10.1007/978-3-540-30133-2_130
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23206-3
Online ISBN: 978-3-540-30133-2
eBook Packages: Springer Book Archive