Abstract
Intrusion Detection Systems (IDSs) are used to monitor computer systems for signs of security violations. Having detected such signs, IDSs trigger alerts to report them. These alerts are presented to a human analyst, who evaluates them and initiates an adequate response.
In practice, IDSs have been observed to trigger thousands of alerts per day, most of which are false positives (i.e. alerts mistakenly triggered by benign events). This makes it extremely difficult for the analyst to correctly identify the true positives (i.e. alerts related to attacks).
In this paper we describe ALAC, the Adaptive Learner for Alert Classification, which is a novel system for reducing false positives in intrusion detection. The system supports the human analyst by classifying alerts into true positives and false positives. The knowledge of how to classify alerts is learned adaptively by observing the analyst. Moreover, ALAC can be configured to process autonomously alerts that have been classified with high confidence. For example, ALAC may discard alerts that were classified with high confidence as false positive. That way, ALAC effectively reduces the analyst’s workload.
We describe a prototype implementation of ALAC and the choice of a suitable machine learning technique. Moreover, we experimentally validate ALAC and show how it facilitates the analyst’s work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.P.: Computer security threat monitoring and surveillance. Technical report, James P. Anderson Co. (1980)
Axelsson, S.: The base-rate fallacy and its implications for the intrusion detection. In: Proceedings of the 6th ACM conference on Computer and Communications Security, Kent Ridge Digital Labs, Singapore, pp. 1–7 (1999)
Bloedorn, E., Hill, B., Christiansen, A., Skorupka, C., Talbot, L., Tivel, J.: Data Mining for Improving Intrusion Detection. Technical report, MITRE (2000)
Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, pp. 115–123. Morgan Kaufmann, San Francisco (1995)
Cuppens, F.: Managing alerts in multi-intrusion detection environment. In: Proceedings 17th Annual Computer Security Applications Conference, New Orleans, pp. 22–31 (2001)
Dain, O., Cunningham, R.K.: Fusing a heterogeneous alert stream into scenarios. In: Proc. of the 2001 ACM Workshop on Data Mining for Security Application, Philadelphia, PA, pp. 1–13 (2001)
Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103. Springer, Heidelberg (2001)
Denning, D.E.: An intrusion detection model. IEEE Transactions on Software Engineering SE-13, 222–232 (1987)
Domingos, P.: Metacost: A General Method for Making Classifiers Cost-Sensitive. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, pp. 155–164 (1999)
Fan, W.: Cost-Sensitive, Scalable and Adaptive Learning Using Ensemble-based Methods. PhD thesis, Columbia University (2001)
Fawcett, T.: ROC graphs: Note and practical considerations for researchers (HPL- 2003-4). Technical report, HP Laboratories (2003)
Giraud-Carrier, C.: A Note on the Utility of Incremental Learning. AI Communications 13, 215–223 (2000)
Hettich, S., Bay, S.D.: The UCI KDD Archive. Web page at http://kdd.ics.uci.edu (1999)
Jacobson, V., Leres, C., McCanne, S.: TCPDUMP public repository. Web page at http://www.tcpdump.org/ (2003)
Julisch, K.: Using Root Cause Analysis to Handle Intrusion Detection Alarms. PhD thesis, University of Dortmund (2003)
Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood (1994)
Lee, W.: A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems. PhD thesis, Columbia University (1999)
Lee, W., Fan, W., Miller, M., Stolfo, S.J., Zadok, E.: Toward cost-sensitive modeling for intrusion detection and response. Journal of Computer Security 10, 5–22 (2002)
Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA Off-Line Intrusion Detection Evaluation. Computer Networks: The International Journal of Computer and Telecommunications Networking 34, 579–595 (2000)
Lippmann, R., Webster, S., Stetson, D.: The effect of identifying vulnerabilities and patching software on the utility of network intrusion detection. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 307–326. Springer, Heidelberg (2002)
Mahoney, M.V., Chan, P.K.: An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg (2003)
Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 16–27. Springer, Heidelberg (2002)
Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A Data Mining Analysis of RTID Alarms. Computer Networks: The International Journal of Computer and Telecommunications Networking 34, 571–577 (2000)
María, J., Hidalgo, G.: Evaluating cost-sensitive unsolicited bulk email categorization. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 615–620. Springer, Heidelberg (2002)
McHugh, J.: The 1998 Lincoln Laboratory IDS Evaluation. A critique. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 145–161. Springer, Heidelberg (2000)
Michalski, R.: On the quasi-minimal solution of the general covering problem. In: Proceedings of the V International Symposium on Information Processing (FCIP 1969) (Switching Circuits), Yugoslavia, Bled, vol. A3, pp. 125–128 (1969)
Mitchel, T.M.: Machine Learning. Mc Graw Hill (1997)
Morin, B., Mé, L., Debar, H., Ducasse, M.: M2D2: A formal data model for IDS alert correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 115–137. Springer, Heidelberg (2002)
Provost, F., Fawcett, T.: Robust classification for impresice environments. Machine Learning Journal 42, 203–231 (2001)
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Francisco (1993)
Roesch, M.: SNORT. The Open Source Network Intrusion System. Web page at http://www.snort.org (1998–2003)
Sommer, R., Paxson, V.: Enhancing Byte-Level Network Intrusion Detection Signatures with Context. In: Proceedings of the 10th ACM conference on Computer and Communication Security, Washington, DC, pp. 262–271 (2003)
Ting, K.: Inducing cost-sensitive trees via instance weighting. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS (LNAI), vol. 1510, pp. 139–147. Springer, Heidelberg (1998)
Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)
Wang, J., Lee, I.: Measuring false-positive by automated real-time correlated hacking behavior analysis. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, p. 512. Springer, Heidelberg (2001)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pietraszek, T. (2004). Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds) Recent Advances in Intrusion Detection. RAID 2004. Lecture Notes in Computer Science, vol 3224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30143-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-30143-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23123-3
Online ISBN: 978-3-540-30143-1
eBook Packages: Springer Book Archive