Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Navigation Pattern Discovery Using Grammatical Inference

  • Conference paper
Grammatical Inference: Algorithms and Applications (ICGI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3264))

Included in the following conference series:

Abstract

We present a method for modeling user navigation on a web site using grammatical inference of stochastic regular grammars. With this method we achieve better models than the previously used first order Markov chains, in terms of predictive accuracy and utility of recommendations. In order to obtain comparable results, we apply the same grammatical inference algorithms on Markov chains, modeled as probabilistic automata. The automata induced in this way perform better than the original Markov chains, as models for user navigation, but they are considerably inferior to the automata induced by the traditional grammatical inference methods. The evaluation of our method was based on two web usage data sets from two very dissimilar web sites. It consisted in producing, for each user, a personalized list of recommendations and then measuring its recall and expected utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering (1995)

    Google Scholar 

  2. Albrecht, D., Zukerman, I., Nicholson, A.: Pre-sending documents on the WWW: A comparative study.In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp.1274–1279 (1999)

    Google Scholar 

  3. Anderson, C., Domingos, P., Weld, D.: Adaptive Web Navigation for Wireless Devices. In:Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001)

    Google Scholar 

  4. Bestavros, A.: Using speculation to reduce server load and service time on the www. In: Proceedings of the fourth ACM International Conference on Information and Knowledge Management, pp. 403–410 (1995)

    Google Scholar 

  5. Masand, B., Spiliopoulou, M. (eds.): WebKDD 1999. LNCS (LNAI), vol. 1836, pp. 92–111. Springer, Heidelberg (2000)

    Book  Google Scholar 

  6. Borges, J.: A Data Mining Model to Capture User Web Navigation Patterns. PhD dissertation (2000)

    Google Scholar 

  7. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (1998)

    Google Scholar 

  8. Cadez, D., Heckerman, C., Meek, P.: Smyth, and S. White. Visualization of Navigation Patterns on a Web Site Using Model Based Clustering. Technical Report MSR-TR-00-18 (2000)

    Google Scholar 

  9. Carrasco, R., Oncina, J.: Learning Regular Grammars by Means of a State Merging Method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, Springer, Heidelberg (1994)

    Google Scholar 

  10. Habrard, A., Bernard, M., Sebban, M.: Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 169–180. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Cooley, R., Mobasher, B., Srivastava, J.: Web Mining: Information and Pattern Discovery on the World Wide Web. In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (1997)

    Google Scholar 

  12. Kohavi, R., Parekh, R.: Ten supplementary analyses to Improve E-commerce Web Sites. In: Proceedings of the Fifth WEBKDD workshop (2003)

    Google Scholar 

  13. Muggleton, S.H., Bryant, C.H., Srinivasan, A.: Learning Chomsky-like grammars for biological sequence families. In: Proceedings of the Seventeenth International Conference on Machine Learning (2000)

    Google Scholar 

  14. Paliouras, G., Papatheodorou, C., Karkaletsis, V., Spyropoulos, C.D.: Clustering the Users of Large Web Sites into Communities. In: Proceedings of International Conference on Machine Learning, ICML (2000)

    Google Scholar 

  15. Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web Usage Mining as a Tool for Personalization: a survey. User Modeling and User-Adapted Interaction Journal 13(4), 311–372 (2003)

    Article  Google Scholar 

  16. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict WWW surfing. In: Proceedings of the 1999 USENIX Annual Technical Conference (1999)

    Google Scholar 

  17. Sarukkai, R.: Link Prediction and Path Analysis Using Markov Chains.In: Proceedings of the 9th World Wide Web Conference (2000)

    Google Scholar 

  18. Spiliopoulou, M., Faulstich, L.C., Wilkler, K.: A data miner analyzing the navigational behavior of Web users. In: Proceedings of the Workshop on Machine Learning in User Modeling of the ACAI 1999 (1999)

    Google Scholar 

  19. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.T.: Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations 1(2), 12–23 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karampatziakis, N., Paliouras, G., Pierrakos, D., Stamatopoulos, P. (2004). Navigation Pattern Discovery Using Grammatical Inference. In: Paliouras, G., Sakakibara, Y. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2004. Lecture Notes in Computer Science(), vol 3264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30195-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30195-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23410-4

  • Online ISBN: 978-3-540-30195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics