Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

  • 1702 Accesses

Abstract

We introduce a new approach for focusing constraint reasoning using so-called streamlining constraints. Such constraints partition the solution space to drive the search first towards a small and structured combinatorial subspace. The streamlining constraints capture regularities observed in a subset of the solutions to smaller problem instances. We demonstrate the effectiveness of our approach by solving a number of hard combinatorial design problems. Our experiments show that streamlining scales significantly beyond previous approaches.

This work was supported in part by the Intelligent Information Systems Institute, Cornell University (AFOSR grant F49620-01-1-0076).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Apt, K.R.: The Rough Guide to Constraint Propagation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 1–23. Springer, Heidelberg (1999)

    Google Scholar 

  3. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler’s Conjecture. Canadian Journal of Mathematics 12, 189–203 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Codognet, P., Diaz, D.: An Efficient Library for Solving CSP with Local Search, http://ws.ailab.sztaki.hu/CodognetDiaz.pdf

  5. Colbourn, C.J., Dinitz, J.H. (eds.): The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  6. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry Breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Focacci, F., Milano, M.: Global Cut Framework for Removing Symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Focacci, F., Shaw, P.: Pruning sub-optimal search branches using local search. In: CP-AI-OR, pp. 181–189 (2002)

    Google Scholar 

  9. Gomes, C., Sellmann, M., van Es, H., van Es, C.: The Challenge of Generating Spatially Balanced Scientific Experiment Designs. Poster CP-AI-OR (2004), See also www.cs.cornell.edu/gomes/SBLS.htm

  10. ILOG Solver 5.1. User’s manual: 443–446 (2001)

    Google Scholar 

  11. Moran, J.: The Wonders of Magic Squares. Vintage, New York (1982)

    Google Scholar 

  12. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: 12th National Conference on Artificial Intelligence, AAAI, pp. 362–367 (1994)

    Google Scholar 

  13. Rowling, J.K.: Harry Potter and the Sorcerer’s Stone. Scholastic (1998)

    Google Scholar 

  14. Tarry, G.: Le problème des 36 officiers. C.R.Assoc. France Av. Science 29(2), 170–203 (1900)

    Google Scholar 

  15. Trump, W.: How many magic squares are there? (2003), Found at http://www.trump.de/-magic-squares/howmany.html

  16. van Es, H., van Es, C.: The spatial nature of randomization and its effects on outcome of field experiments. Agron. J 85, 420–428 (1993)

    Article  Google Scholar 

  17. Hnich, B., Smith, B.M., Walsh, T.: Dual Modelling of Permutation and Injection Problems. Journal of Artificial Intelligence Research 21, 357–391 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Weisstein, E.W.: Magic Square. From Mathworld - A Wolfram Web Resource (1999), http://mathworld.worlfram.com/MagicSquare.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, C., Sellmann, M. (2004). Streamlined Constraint Reasoning. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics