Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

Abstract

Propagation based solvers typically represent variables by a current domain of possible values that may be part of a solution. Finite set variables have been considered impractical to represent as a domain of possible values since, for example, a set variable ranging over subsets of {1, ..., N} has 2N possible values. Hence finite set variables are presently represented by a lower bound set and upper bound set, illustrating all values definitely in (and by negation) all values definitely out. Propagators for finite set variables implement set bounds propagation where these sets are further constrained. In this paper we show that it is possible to represent the domains of finite set variables using reduced ordered binary decision diagrams (ROBDDs) and furthermore we can build efficient domain propagators for set constraints using ROBDDs. We show that set domain propagation is not only feasible, but can solve some problems significantly faster than using set bounds propagation because of the stronger propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azevedo, F., Barahona, P.: Modelling digital circuits problems with set constraints. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 414–428. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bessiére, C., Régin, J.-C.: Arc consistency for general constraint networks: preliminary results. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 398–404 (1997)

    Google Scholar 

  3. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  Google Scholar 

  4. http://vlsi.colorado.edu/~fabio/CUDD/

  5. http://www.icparc.ic.ac.uk/eclipse/

  6. Gervet, C.: Interval propagation to reason about sets: Definition and implenentation of a practical language. Constraints 1(3), 191–244 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kirkman, T.P.: On a problem in combinatorics. Cambridge and Dublin Math. Journal, 191–204 (1847)

    Google Scholar 

  8. Kiziltan, Z.: Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala University (2004)

    Google Scholar 

  9. Marriott, K., Stuckey, P.J.: Programming with Constraints: an Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Müller, T.: Constraint Propagation in Mozart. PhD thesis, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik (2001)

    Google Scholar 

  11. Puget, J.-F.: PECOS: A high level constraint programming language. In: Proceedings of SPICIS 1992 (1992)

    Google Scholar 

  12. Sadler, A., Gervet, C.: Global reasoning on sets. In: FORMUL 2001 workshop on modelling and problem formulation (2001)

    Google Scholar 

  13. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury, an efficient purely declarative logic programming language. JLP 29(1-3), 17–64 (1996)

    Article  MATH  Google Scholar 

  14. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and evaluation of the constraint language cc(FD). JLP 37(1-3), 139–164 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lagoon, V., Stuckey, P.J. (2004). Set Domain Propagation Using ROBDDs. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics