Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Strategies for (Weighted) Maximum Satisfiability

  • Conference paper
Principles and Practice of Constraint Programming – CP 2004 (CP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

  • 1643 Accesses

Abstract

It is well known that the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for satisfiability (SAT) can be extended to an algorithm for maximum SAT (max-SAT). In this paper, we propose a number of strategies to significantly improve this max-SAT method. The first strategy is a set of unit propagation rules; the second is an effective lookahead heuristic based on linear programming; and the third strategy is a dynamic variable ordering that exploits problem constrainedness during search. We integrate these strategies in an efficient complete solver for both max-SAT and weighted max-SAT. Our experimental results on random problem instances and many instances from SATLIB demonstrate the efficacy of these strategies and show that the new solver is able to significantly outperform most of the existing complete max-SAT solvers, with a few orders of magnitude of improvement in running time in many cases.

This research was supported in part by NSF grants IIS-0196057 and ITR/EIA-0113618, and in part by DARPA Cooperative Agreement F30602-00-2-0531. We thank Zhongsheng Guo for an early implementation of the DPLL algorithm and Fadi Aloul, Javier Larrosa and Jordi Plane for making their programs available to us for this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alsinet, T., Manya, F., Planes, J.: Improved branch and bound algorithms for Max-SAT. In: Proc. SAT 2003 (2003)

    Google Scholar 

  2. Borchers, B., Furman, J.: A two-phase exact algorithm for Max-SAT and weighted Max- SAT problems. J. Combinatorial Optimization 2(4), 299–306 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. http://www.nmt.edu/borchers/maxsat.html

  4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. CACM 5, 394–397 (1962)

    MATH  MathSciNet  Google Scholar 

  5. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  6. Dixon, H., Ginsberg, M.L.: Inference methods for a pseudo-boolean satisfiability solver. In: Proc. AAAI 2002, pp. 635–640

    Google Scholar 

  7. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. PhD thesis, Univ. of Pennsylvania (1995)

    Google Scholar 

  8. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artificial Intelligence 58, 21–70 (1992)

    Article  MathSciNet  Google Scholar 

  9. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-SAT as weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Hansen, P., Jaumard, B.: Algorithm for the maximum satisfiability problem. Computing 44, 279–303 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill, New York (2001)

    Google Scholar 

  12. Hooker, J.N., Fedjki, G.: Branch-and-cut solution of inference problems in prepositional logic. Annals of Math. and Artificial Intelligence 1, 123–139 (1990)

    Article  MATH  Google Scholar 

  13. Hooker, J.N., Vinay, V.: Branching rules for satisfiability. J. Automated Reasoning 15, 359–383 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoos, H.H., Stuzle, T.: (1999), http://www.satlib.org

  15. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for Max-SAT and weighted Max-SAT. In: Du, D., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications, pp. 519–536 (1997)

    Google Scholar 

  16. Li, C.M.: Anbulagan. Heuristics based on unit propagation for satisfiability problems. In: Proc. IJCAI 1997, pp. 366–371 (1997)

    Google Scholar 

  17. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  18. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithm 36, 63–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proc. AAAI 2002, pp. 682–687 (2002)

    Google Scholar 

  20. Selman, B.: Mwff: Program for generating random max k-SAT instances. Available from DIMACS

    Google Scholar 

  21. Selman, B., Kautz, H., Cohen, B.: Noise strategies for local search. In: Proc. AAAI 1994, pp. 337–343 (1994)

    Google Scholar 

  22. Wallace, R.J.: Enhancing maximum satisfiability algorithms with pure literal strategies. In: 11th Canadian Conf. on AI (1996)

    Google Scholar 

  23. Wallace, R.J., Freuder, E.C.: Comparative study of constraint satisfaction and davisputnam algorithms for maximum satisfiability problems. In: Johnson, D., Trick, M. (eds.) Cliques, Coloring, and Satisfiability, pp. 587–615 (1996)

    Google Scholar 

  24. Walser, J.P.: Integer Optimization Local Search. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  25. Zhang, H., Shen, H., Manya, F.: Exact algorithms for Max-SAT. In: Workshop on First- Order Theorem Proving (FTP 2003) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xing, Z., Zhang, W. (2004). Efficient Strategies for (Weighted) Maximum Satisfiability. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics