Abstract
Sequence alignment algorithms have a long standing tradition in bioinformatics. In this paper, we formulate an extension to existing local alignment algorithms: local alignments across multiple scoring functions. For this purpose, we use the Waterman-Eggert algorithm for suboptimal local alignments as template and introduce two new features therein: 1) an alignment of two strings over a set of score functions and 2) a switch cost function δ for penalizing jumps into a different scoring scheme within an alignment.
Phylogenetic footprinting, as one potential application of this algorithm, was studied in greater detail. In this context, the right evolutionary distance and thus the scoring scheme is often not known a priori. We measured sensitivity and specificity on a test set of 21 human-rodent promoter pairs. Ultimately, we could attain a 4.5-fold enrichment of verified binding sites in our alignments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altschul, S.F.: A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993)
Chain, P., Kurtz, S., Ohlebusch, E., Slezak, T.: An applications-focused review of comparative genomics tools: Capabilities, limitations and future challenges. Briefings in Bioinformatics 4, 105–123 (2003)
Dieterich, C., Cusack, B., Wang, H., Rateitschak, K., Krause, A., Vingron, M.: Annotating regulatory DNA based on man-mouse genomic comparison. Bioinformatics 18(Suppl. 2), S84–S90 (2002) (Proceedings of ECCB 2002)
Duret, L., Bucher, P.: Searching for regulatory elements in human noncoding sequences. Curr. Opin. Struct. Biol. 7, 399–406 (1997)
Hardison, R.C.: Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet. 16, 369–372 (2000)
Hasegawa, M., Iida, Y., Yano, T., Takaiwa, F., Iwabuchi, M.: Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences. J. Mol. Evol. 22, 32–38 (1985)
Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Commun. ACM 18, 341–343 (1975)
Huang, X., Miller, W.: A time-efficient, linear-space local similarity algorithm. Adv. Appl. Math. 12, 337–357 (1991)
Miller, W.: Comparison of genomic DNA sequences: solved and unsolved problems. Bioinformatics 17, 391–397 (2001)
Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., Miller, W.: Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003)
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)
Ureta-Vidal, A., Ettwiller, L., Birney, E.: Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat. Rev. Genet. 4, 251–262 (2003)
Wasserman, W.W., Palumbo, M., Thompson, W., Fickett, J.W., Lawrence, C.E.: Human-mouse genome comparisons to locate regulatory sites. Nature Genetics 26, 225–228 (2000)
Waterman, M.S., Eggert, M.: A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723–728 (1987)
Zhang, Z., Berman, P., Wiehe, T., Miller, W.: Post-processing long pairwise alignments. Bioinformatics 15, 1012–1019 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michael, M., Dieterich, C., Stoye, J. (2004). Suboptimal Local Alignments Across Multiple Scoring Schemes. In: Jonassen, I., Kim, J. (eds) Algorithms in Bioinformatics. WABI 2004. Lecture Notes in Computer Science(), vol 3240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30219-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-30219-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23018-2
Online ISBN: 978-3-540-30219-3
eBook Packages: Springer Book Archive