Abstract
We present a real-time visual analysis system for surveillance applications based on an Artificial Immune System inspired framework [10] that can reliably detect unknown patterns in input image sequences. The system converts gray-scale or color images to binary with statistical 3x3 sub-pattern analysis based on an AIS algorithm, which make use of the standard AIS modules. Our system is implemented on specialized hardware (the Cellular Nonlinear Network (CNN) Universal Machine). Results from tests in a 3D virtual world with different terrain textures are reported to demonstrate that the system can detect unknown patterns and dynamical changes in image sequences. Applications of the system include in particular explorer systems for terrain surveillance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Germany (1999)
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)
Hofmeyr, S.A., Forrest, S.: Architecture for an Artificial Immune. Evolutionary Computation 7(1), 45–68 (2000), http://www.cs.unm.edu/steveah/
Satyanath, S., Sahin, F.: Artificial Immune Systems Approach to a Real Time Color Image Classification Problem. In: Proceedings of the SMC2001, IEEE International Conference on Systems, Man, and Cybernetics, Arizona, USA, vol. 4, pp. 2285–2290 (2001)
Chao, D.L., Forrest, S.: Information Immune Systems. In: Proceedings of the First International Conference on Artificial Immune Systems (ICARIS), pp. 132–140 (2002)
Roska, T., Chua, L.O.: The CNN Universal Machine: An analogic array computer. IEEE Transactions on Circuits and Systems-II 40, 163–173 (1993)
Chua, L.O., Roska, T.: Cellular neural networks and visual computing, Foundations and applications. Cambridge University Press, Cambridge (2002)
Zarandy, A., Rekeczky, C., Szatmari, I., Foldesy, P.: Aladdin Visual Computer. IEEE Journal on Circuits, Systems and Computers 12(6) (2003)
Liñán, G., Espejo, S., Domínguez-Castro, R.: ACE4k: An analog I/O 64 x 64 Visual Microprocessor Chip With 7-bit Analog Accuracy. Intl. Journal Of Circuit Theory and Applications 30, 89–116 (2002)
Cserey, G., Falus, A., Roska, T.: Immune Response Inspired CNN Algorithms for Many-Target Detection. In: Proc. ECCTD 2003, Krakow (2003)
Cserey, G., Falus, A., Porod, W., Roska, T.: An Artificial Immune System for Visual Applications with CNN-UM. In: ISCAS 2004, Vancouver (2004) (paper accepted)
Cserey, G., Falus, A., Porod, W., Roska, T.: Feature Extraction CNN Algorithms for Artificial Immune Systems. In: IJCNN 2004, Budapest (2004) (paper accepted)
Falus, A.: Physiological and Molecular Principles of Immunology. In: Hungarian, Semmelweis Press, Budapest (1998)
Roska, T., Kék, L., Nemes, L., Zarándy, Á., Brendel, M., Szolgay, P. (ed): CNN Software Library (Templates and Algorithms), Version 7.2. Analogical and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-CADET-15, Budapest (1998)
Kék, L., Zarándy, Á.: Implementation of Large-Neighborhood Nonlinear Templates on the CNN Universal Machine. International Journal of Circuit Theory and Applications 26(6), 551–566 (1998)
Antani, S., Kasturi, R., Jain, R.: A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern Recognition 35, 945–965 (2002)
Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural networks–a review. Pattern Recognition 35, 2279–2301 (2002)
Ivanov, Y., Stauffer, C., Bobick, A., Grimson, W.E.L.: Video Surveillance of Interactions. In: Proc. Second IEEE Int. W/S on Visual Surveillance, pp. 82–89 (1999)
Hayashi, A., Nakasima, R., Kanbara, T., Suematsu, N.: Multi-object Motion Pattern Classification for Visual Surveillance and Sports Video Retrieval. In: Int. Conf. on Vision Interface (2002)
Dasgupta, D., Cao, Y., Yand, C.: An Immunogenetic Approach to Spectra Recognition. In: Proc. of the Genetic and Evolutionary Computation Conference, pp. 149–155 (1999)
Tarakanov, A., Sokolova, S., Abramov, B., Aikimbayev, A.: Immunocomputing of the Natural Plague Foci. In: Proc. of the Genetic and Evolutionary Computation Conference, Workshop on Artificial Immune Systems and Their Applications, pp. 38–39 (2000)
Carter, J.H.: The Immune System as a Model for Pattern Recognition and Classification. Journal of the American Medical Informatics Association, 28–41 (2000)
Carvalho, D.R., Freitas, A.A.: An Immunological Algorithm for Discovering Small- Disjunct Rules in Data Mining. In: Proc. of the Genetic and Evolutionary Computation Conference, pp. 401–404 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cserey, G., Porod, W., Roska, T. (2004). An Artificial Immune System Based Visual Analysis Model and Its Real-Time Terrain Surveillance Application. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds) Artificial Immune Systems. ICARIS 2004. Lecture Notes in Computer Science, vol 3239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30220-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-30220-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23097-7
Online ISBN: 978-3-540-30220-9
eBook Packages: Springer Book Archive