Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using Distributed Evolutionary Algorithm

  • Conference paper
High Performance Computing - HiPC 2004 (HiPC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3296))

Included in the following conference series:

Abstract

The problem of computing spanning trees along with specific constraints has been studied in many forms. Most of the problem instances are NP-hard, and many approximation and stochastic algorithms which yield a single solution, have been proposed. Essentially, such problems are multi-objective in nature, and a major challenge to solving the problems is to capture possibly all the (representative) equivalent and diverse solutions at convergence. In this paper, we attempt to solve the generic multi-objective spanning tree (MOST) problem, in a novel way, using an evolutionary algorithm (EA). We consider, without loss of generality, edge-cost and diameter as the two objectives, and use a multiobjective evolutionary algorithm (MOEA) that produces diverse solutions without needing a priori knowledge of the solution space. We employ a distributed version of the algorithm and generate solutions from multiple tribes. We use this approach for generating (near-) optimal spanning trees from benchmark data of different sizes. Since no experimental results are available for MOST, we consider two well known diameter-constrained spanning tree algorithms and modify them to generate a Pareto-front for comparison. Interestingly, we observe that none of the existing algorithms could provide good solutions in the entire range of the Pareto-front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NP- Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  2. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)

    MATH  Google Scholar 

  3. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Bicriteria Network Design Problems. J. Algorithms 28, 142–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Approximation Algorithms for Degree-Constrained Minimum-Cost Network Design Problems. Algorithmica 31, 58–78 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boldon, N., Deo, N., Kumar, N.: Minimum-Weight Degree-Constrained Spanning Tree Problem: Heuristics and Implementation on an SIMD Parallel Machine. Parallel Computing 22, 369–382 (1996)

    Article  MATH  Google Scholar 

  6. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Deo, N., Micikevicius, P.: Comparison of Prüfer-like Codes for Labeled Trees. In: Proc. 32nd South-Eastern Int. Conf. Combinatorics, Graph Theory and Computing (2001)

    Google Scholar 

  8. Raidl, G.R., Julstrom, B.A.: Greedy Heuristics and an Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 747–752. Springer, Heidelberg (2004)

    Google Scholar 

  9. Julstrom, B.A., Raidl, G.R.: Edge Sets: An Effective Evolutionary Coding of Spanning Trees. IEEE Trans. Evolutionary Computation 7, 225–239 (2003)

    Article  Google Scholar 

  10. Knowles, J.D., Corne, D.W.: A New Evolutionary Approach to the Degree-Constrained Minimum Spanning Tree Problem. IEEE Trans. Evolutionary Computation 4, 125–133 (2000)

    Article  Google Scholar 

  11. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective Minimum Spanning Tree Problems. In: Proc. 2001 Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 544–551 (2001)

    Google Scholar 

  12. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Boston (2002)

    Book  MATH  Google Scholar 

  13. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  14. Purshouse, R.C., Fleming, P.J.: Elitism, Sharing and Ranking Choices in Evolutionary Multi- criterion Optimization. Research Report No. 815, Dept. Automatic Control & Systems Engineering, University of Sheffield (2002)

    Google Scholar 

  15. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10, 283–314 (2002)

    Article  Google Scholar 

  16. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 263–282 (2002)

    Article  Google Scholar 

  17. Zohu, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European J. Operations Research 114, 141–152 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Singh, P.K., Chakrabarti, P.P. (2004). Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using Distributed Evolutionary Algorithm. In: Bougé, L., Prasanna, V.K. (eds) High Performance Computing - HiPC 2004. HiPC 2004. Lecture Notes in Computer Science, vol 3296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30474-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30474-6_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24129-4

  • Online ISBN: 978-3-540-30474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics