Abstract
In this document, we propose a machine vision system to detect the predominant direction of motion of a Foucault pendulum. Given a certain configuration where the camera has a top view of the pendulum’s bob in motion, the system builds an adaptive model of the background. From it, the bob’s center of mass is computed. Then, an ellipse model is fitted to the trajectory. Finally, the noise in the observed predominant direction of motion is filtered out to get a robust estimate of its value. The system has proved to be quite reliable on a simple version of the Foucault pendulum where it was tested.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Corliss, W.R.: Science Frontiers: Some Anomalies and Curiosities of Nature. Sourcebook Project (1994)
Crane, R.H.: A Foucault Pendulum Wall Clock. American Journal of Physics 63(1), 33–39 (1995)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)
Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct Least Square Fitting of Ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 476–480 (1999)
Ghosh, A., Banerjee, S.: A proposed Observation During the Total Solar Eclipse on 11 August 1999. In: eprint arXiv:astro-ph/9904083, p. 1999astro. ph.4083G (1999)
Gillies, G.T.: Difusse Reflection. American Journal of Physics 58, 530 (1990)
Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal of the Basic Engineering 82, 35–45 (1960)
Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background Modeling and Subtraction of Dynamic Scenes. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1305–1312 (2003)
The California Academy of Sciences (2004), http://www.calacademy.org/products/pendulum.html
Rasche, A., Troger, P., Dirska, M., Polze, A.: Foucault’s Pendulum in the Distributed Control Lab. In: IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, pp. 299–306 (2003)
Rigoll, G., Muller, S., Winterstein, B.: Robust Person Tracking with Non-Stationary Background using a Combined Pseudo-2D-HMM and Kalman-Filter Approach. In: IEEE International Conference on Image Processing, vol. 4, pp. 242–246 (1999)
Stauffer, C., Grimson, W.E.L.: Adaptative Background Mixture Models for Real-Time Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)
Tomasi, C.: Mathematical Methods for Robotics and Vision. CS205 Stanford University (1994)
Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical report. University of North Carolina (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salas, J., Flores, J. (2004). An Image Analysis System to Compute the Predominant Direction of Motion in a Foucault Pendulum. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-30498-2_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23806-5
Online ISBN: 978-3-540-30498-2
eBook Packages: Springer Book Archive