Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Image Analysis System to Compute the Predominant Direction of Motion in a Foucault Pendulum

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2004 (IBERAMIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Included in the following conference series:

Abstract

In this document, we propose a machine vision system to detect the predominant direction of motion of a Foucault pendulum. Given a certain configuration where the camera has a top view of the pendulum’s bob in motion, the system builds an adaptive model of the background. From it, the bob’s center of mass is computed. Then, an ellipse model is fitted to the trajectory. Finally, the noise in the observed predominant direction of motion is filtered out to get a robust estimate of its value. The system has proved to be quite reliable on a simple version of the Foucault pendulum where it was tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corliss, W.R.: Science Frontiers: Some Anomalies and Curiosities of Nature. Sourcebook Project (1994)

    Google Scholar 

  2. Crane, R.H.: A Foucault Pendulum Wall Clock. American Journal of Physics 63(1), 33–39 (1995)

    Article  MathSciNet  Google Scholar 

  3. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  4. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct Least Square Fitting of Ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 476–480 (1999)

    Article  Google Scholar 

  5. Ghosh, A., Banerjee, S.: A proposed Observation During the Total Solar Eclipse on 11 August 1999. In: eprint arXiv:astro-ph/9904083, p. 1999astro. ph.4083G (1999)

    Google Scholar 

  6. Gillies, G.T.: Difusse Reflection. American Journal of Physics 58, 530 (1990)

    Article  Google Scholar 

  7. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal of the Basic Engineering 82, 35–45 (1960)

    Google Scholar 

  8. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background Modeling and Subtraction of Dynamic Scenes. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1305–1312 (2003)

    Google Scholar 

  9. The California Academy of Sciences (2004), http://www.calacademy.org/products/pendulum.html

  10. Rasche, A., Troger, P., Dirska, M., Polze, A.: Foucault’s Pendulum in the Distributed Control Lab. In: IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, pp. 299–306 (2003)

    Google Scholar 

  11. Rigoll, G., Muller, S., Winterstein, B.: Robust Person Tracking with Non-Stationary Background using a Combined Pseudo-2D-HMM and Kalman-Filter Approach. In: IEEE International Conference on Image Processing, vol. 4, pp. 242–246 (1999)

    Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Adaptative Background Mixture Models for Real-Time Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  13. Tomasi, C.: Mathematical Methods for Robotics and Vision. CS205 Stanford University (1994)

    Google Scholar 

  14. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical report. University of North Carolina (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salas, J., Flores, J. (2004). An Image Analysis System to Compute the Predominant Direction of Motion in a Foucault Pendulum. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics