Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geodesic Topographic Product: An Improvement to Measure Topology Preservation of Self-Organizing Neural Networks

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2004 (IBERAMIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Included in the following conference series:

Abstract

Self-organizing neural networks endeavour to preserve the topology of an input space by means of competitive learning. There are diverse measures that allow to quantify how good is this topology preservation. However, most of them are not applicable to measure non-linear input manifolds, since they don’t consider the topology of the input space in their calculation. In this work, we have modified one of the most employed measures, the topographic product, incorporating the geodesic distance as distance measure among the reference vectors of the neurons. Thus, it is possible to use it with non-lineal input spaces. This improvement allows to extend the studies realized with the original topographic product focused to the representation of objects by means of self-organizing neural networks. It would be also useful to determine the right dimensionality that a network must have to adapt correctly to an input manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martinetz, T., Schulten, K.: Topology Representing Networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  2. Bauer, H.-U., Herrmann, M., Villmann, T.: Neural Maps and Topographic Vector Quantization. Neural Networks 12(4-5), 659–676 (1999)

    Article  Google Scholar 

  3. Bauer, H.-U., Pawelzik, K.R.: Quantifying the Neighborhood Preservation of Self- Organizing Feature Maps. IEEE Transactions on Neural Networks 3(4), 570–578 (1992)

    Article  Google Scholar 

  4. Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology Preservation in Self- Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256–266 (1997)

    Article  Google Scholar 

  5. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn. Brooks/Cole Publishing Company, Monterey (1998)

    Google Scholar 

  6. Flórez, F., García, J.M., García, J., Hernández, A.: Representing 2D-objects. Comparison of several self-organizing networks. In: Advances in Neural Networks World, pp. 69–72. WSEAS Press (2002)

    Google Scholar 

  7. Flórez, F., García, J.M., García, J., Hernández, A.: Representation of 2D Objects with a Topology Preserving Network. In: Proceedings of the 2nd International Workshop on Pattern Recognition in Information Systems (PRIS 2002), Alicante, pp. 267–276. ICEIS Press (2001)

    Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  9. Fritzke, B.: Growing Cell Structures – A Self-organizing Network for Unsupervised and Supervised Learning. Technical Report TR-93-026, International Computer Science Institute, Berkeley, California (1993)

    Google Scholar 

  10. Martinetz, T., Schulten, K.: A “Neural-Gas” Network Learns Topologies. In: Kohonen, T., Mäkisara, K., Simula, O. (eds.) Artificial Neural Networks, vol. 1, pp. 397–402 (1991)

    Google Scholar 

  11. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  12. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when required. Neural Networks 15, 1041–1058 (2002)

    Article  Google Scholar 

  13. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)

    Google Scholar 

  14. Flórez, F., García, J.M., García, J., Hernández, A.: Hand Gesture Recognition Following the Dynamics of a Topology-Preserving Network. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, D.C, pp. 318–323. IEEE Inc., Los Alamitos (2001)

    Google Scholar 

  15. Villmann, T., Merényi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Networks 16, 389–403 (2003)

    Article  Google Scholar 

  16. Flórez, F., García, J.M., García, J., Hernández, A.: Analysis of the topology preservation of accelerated Growing Neural Gas in the representation of bidimensional objects. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS, vol. 3040, pp. 167–176. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Revuelta, F.F., Chamizo, J.M.G., Rodríguez, J.G., Sáez, A.H. (2004). Geodesic Topographic Product: An Improvement to Measure Topology Preservation of Self-Organizing Neural Networks. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics