Abstract
In the class \(\mathcal{H}\) of (26,6)–connected homogeneous digital spaces on R 3 we find a digital space E U with the largest set of digital surfaces in that class. That is, if a digital objet S is a digital surface in any space \(E \epsilon \mathcal{H}\) then S is a digital surface in E U too.
This work has been partially supported by the projects BFM2001-3195-C03-01 and BFM2001-3195-C03-02 (MCYT Spain).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital Lighting Functions. LNCS, vol. 1347, pp. 139–150 (1997)
Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: A Digital Index Theorem. Int. J. Patter Recog. Art. Intell. 15(7), 1–22 (2001)
Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Weak Lighting Functions and Strong 26-surfaces. Theoretical Computer Science 283, 29–66 (2002)
Bertrand, G., Malgouyres, R.: Some Topological Properties of Surfaces in ℤ3. Jour. of Mathematical Imaging and Vision. 11, 207–221 (1999)
Ciria, J.C., Domínguez, E., Francés, A.R.: Separation Theorems for Simplicity 26-surfaces. LNCS, vol. 2301, pp. 45–56 (2002)
Couprie, M., Bertrand, G.: Simplicity Surfaces: a new definition of surfaces in ℤ3. SPIE Vision Geometry V. 3454, 40–51 (1998)
Kong, T.Y., Roscoe, A.W.: Continuous Analogs of Axiomatized Digital Surfaces. Comput. Vision Graph. Image Process. 29, 60–86 (1985)
Malandain, G., Bertrand, G., Ayache, N.: Topological Segmentation of Discrete Surfaces. Int. Jour. of Computer Vision 10(2), 183–197 (1993)
Maunder, C.R.F.: Algebraic Topology. Cambridge University Press, Cambridge (1980)
Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three–dimensional Digital Images. Inform. Control. 51, 227–247 (1981)
Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. In: Ergebnisse der Math., vol. 69. Springer, Heidelberg (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ciria, J.C., De Miguel, A., Domínguez, E., Francés, A.R., Quintero, A. (2004). A Maximum Set of (26,6)-Connected Digital Surfaces. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-30503-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23942-0
Online ISBN: 978-3-540-30503-3
eBook Packages: Computer ScienceComputer Science (R0)