Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Decycling Number of Cubic Graphs

  • Conference paper
Combinatorial Geometry and Graph Theory (IJCCGGT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3330))

Abstract

For a graph G, a subset SV(G), is said to be a decycling set of G if if GS is acyclic. The cardinality of smallest decycling set of G is called the decycling number of G and it is denoted by φ(G).

Bau and Beineke posed the following problems: Which cubic graphs G with | G | = 2n satisfy \(\phi(G)=\lceil{\frac{n+1}{2}}\rceil\)? In this paper, we give an answer to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bau, S., Beineke, L.W.: The decycling number of graphs. Australasian J. Combinatorics 25, 285–298 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, 1st edn. The MacMillan Press, Basingstoke (1976)

    Google Scholar 

  3. Hakimi, S.: On the realizability of a set of integers as the degree of the vertices of a graph. SIAM J. Appl. Math. 10, 496–506 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Havel, M.: A remark on the existence of finite graphs (in Hungarian). Casopis Pest. Mat. 80, 477–480 (1955)

    MATH  MathSciNet  Google Scholar 

  5. Punnim, N.: On maximum induced forests in graphs. Seams Bull. of Maths. 27, 667–674 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Punnim, N. (2005). The Decycling Number of Cubic Graphs. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds) Combinatorial Geometry and Graph Theory. IJCCGGT 2003. Lecture Notes in Computer Science, vol 3330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30540-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30540-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24401-1

  • Online ISBN: 978-3-540-30540-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics