Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Words Avoiding \(\frac{7}{3}\)-Powers and the Thue–Morse Morphism

  • Conference paper
Developments in Language Theory (DLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3340))

Included in the following conference series:

Abstract

In 1982, Séébold showed that the only overlap-free binary words that are the fixed points of non-identity morphisms are the Thue–Morse word and its complement. We strengthen Séébold’s result by showing that the same result holds if the term ‘overlap-free’ is replaced with ‘\(\frac{7}{3}\)-power-free’. Furthermore, the number \(\frac{7}{3}\) is best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words. Electron. J. Combin. 5, #R27 (1998)

    MathSciNet  Google Scholar 

  2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Berstel, J., Séébold, P.: A characterization of overlap-free morphisms. Discrete Appl. Math. 46, 275–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dejean, F.: “Sur un théorème de Thue”. J. Combin. Theory Ser. A 13, 90–99 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fife, E.: Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, 115–136 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gottschalk, W., Hedlund, G.: A characterization of the Morse minimal set. Proc. Amer. Math. Soc. 15, 70–74 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory Ser. A 104, 335–347 (2004)

    Article  Google Scholar 

  8. Kolpakov, R., Kucherov, G., Tarannikov, Y.: On repetition-free binary words of minimal density, WORDS (Rouen, 1997). Theoret. Comput. Sci. 218, 161–175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Morse, M., Hedlund, G.: Unending chess, symbolic dynamics, and a problem in semi-groups. Duke Math. J. 11, 1–7 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  10. Restivo, A., Salemi, S.: Overlap free words on two symbols. In: Perrin, D., Nivat, M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer, Heidelberg (1984)

    Google Scholar 

  11. Séébold, P.: Morphismes itérés, mot de Morse et mot de Fibonacci. C. R. Acad. Sci. Paris Sér. I Math. 295, 439–441 (1982)

    MATH  Google Scholar 

  12. Séébold, P.: Overlap-free sequences. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 207–215. Springer, Heidelberg (1984)

    Google Scholar 

  13. Séébold, P.: Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11, 255–264 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shur, A.M.: The structure of the set of cube-free ℤ-words in a two-letter alphabet (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 64(2000), 847–871 (2000); English translation in Izv. Math. 64, 847–871 (2000)

    Google Scholar 

  15. Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Math. Nat. Kl. 1, 1–67 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rampersad, N. (2004). Words Avoiding \(\frac{7}{3}\)-Powers and the Thue–Morse Morphism. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds) Developments in Language Theory. DLT 2004. Lecture Notes in Computer Science, vol 3340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30550-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30550-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24014-3

  • Online ISBN: 978-3-540-30550-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics