Abstract
In 1982, Séébold showed that the only overlap-free binary words that are the fixed points of non-identity morphisms are the Thue–Morse word and its complement. We strengthen Séébold’s result by showing that the same result holds if the term ‘overlap-free’ is replaced with ‘\(\frac{7}{3}\)-power-free’. Furthermore, the number \(\frac{7}{3}\) is best possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allouche, J.-P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words. Electron. J. Combin. 5, #R27 (1998)
Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)
Berstel, J., Séébold, P.: A characterization of overlap-free morphisms. Discrete Appl. Math. 46, 275–281 (1993)
Dejean, F.: “Sur un théorème de Thue”. J. Combin. Theory Ser. A 13, 90–99 (1972)
Fife, E.: Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, 115–136 (1980)
Gottschalk, W., Hedlund, G.: A characterization of the Morse minimal set. Proc. Amer. Math. Soc. 15, 70–74 (1964)
Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory Ser. A 104, 335–347 (2004)
Kolpakov, R., Kucherov, G., Tarannikov, Y.: On repetition-free binary words of minimal density, WORDS (Rouen, 1997). Theoret. Comput. Sci. 218, 161–175 (1999)
Morse, M., Hedlund, G.: Unending chess, symbolic dynamics, and a problem in semi-groups. Duke Math. J. 11, 1–7 (1944)
Restivo, A., Salemi, S.: Overlap free words on two symbols. In: Perrin, D., Nivat, M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer, Heidelberg (1984)
Séébold, P.: Morphismes itérés, mot de Morse et mot de Fibonacci. C. R. Acad. Sci. Paris Sér. I Math. 295, 439–441 (1982)
Séébold, P.: Overlap-free sequences. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 207–215. Springer, Heidelberg (1984)
Séébold, P.: Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11, 255–264 (1985)
Shur, A.M.: The structure of the set of cube-free ℤ-words in a two-letter alphabet (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 64(2000), 847–871 (2000); English translation in Izv. Math. 64, 847–871 (2000)
Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Math. Nat. Kl. 1, 1–67 (1912)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rampersad, N. (2004). Words Avoiding \(\frac{7}{3}\)-Powers and the Thue–Morse Morphism. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds) Developments in Language Theory. DLT 2004. Lecture Notes in Computer Science, vol 3340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30550-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-30550-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24014-3
Online ISBN: 978-3-540-30550-7
eBook Packages: Computer ScienceComputer Science (R0)