Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Superimposing Voronoi Complexes for Shape Deformation

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

Abstract

Edelsbrunner et al. defined a framework of shape deformations with shapes bounded by skin manifold. We prove that the infinitely many synthesized shapes in the deformation sequence share finitely many common Voronoi complexes. Therefore, we propose a new algorithm to compute the common Voronoi complexes efficiently for the deformations, and use these common complexes to compute the synthesized shapes in real time. This makes generating, visualizing, and customizing shape deformations feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10, 377–409 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheng, H., Edelsbrunner, H., Fu, P.: Shape Space from Deformation. In: Proc. 6th Pacific Conf. Comput. Graphics Appl., pp. 104–113 (1998)

    Google Scholar 

  3. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. In: Discrete and Computational Geometry, vol. 4(1), pp. 387–421 (1989)

    Google Scholar 

  4. Edelsbrunner, H.: Deformable Smooth Surface Design. Discrete Comput. Geom. 21, 87–115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Seidel, R.: Linear programming and convex hulls made easy. In: Proc. 6th Annu ACM Sympos. Coput. Geom., pp. 211–215 (1990)

    Google Scholar 

  6. Seidel, R.: Small-dimensional linear programming and convex hulls made easy. In: Discrete Comput. Geom., pp. 423–434 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, C., Cheng, HL. (2004). Superimposing Voronoi Complexes for Shape Deformation. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics