Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Stability of Approximation for Hamiltonian Path Problems

  • Conference paper
SOFSEM 2005: Theory and Practice of Computer Science (SOFSEM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3381))

  • 705 Accesses

Abstract

We consider the problem of finding a cheapest Hamiltonian path of a complete graph satisfying a relaxed triangle inequality, i.e., such that for some parameter β > 1, the edge costs satisfy the inequality c({x,y}) ≤ β(c({x,z}) + c({z,y})) for every triple of vertices x, y, z. There are three variants of this problem, depending on the number of prespecified endpoints: zero, one, or two. For metric graphs, there exist approximation algorithms, with approximation ratio \(\frac{3}{2}\) for the first two variants and \(\frac{5}{3}\) for the latter one, respectively.

Using results on the approximability of the Travelling Salesman Problem with input graphs satisfying the relaxed triangle inequality, we obtain for our problem approximation algorithms with ratio min(\(\beta^{2} + \beta,\frac{3}{2}\beta^{2})\) for zero or one prespecified endpoints, and \(\frac{5}{3}\beta^{2}\) for two endpoints.

The work reported in this paper has been partially supported by the Italian MIUR under the project “Web-based management and representation of spatial and geographical data”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Böckenhauer, H.J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. Theoretical Computer Science 285, 3–24 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegy–Mellon University (1976)

    Google Scholar 

  3. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks: An International Journal 38, 59–67 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Bender, M., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 80–85. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Hoogeveen, J.A.: Analysis of christofides’ heuristic: Some paths are more difficult than cycles. Operational Research Letters 10, 291–295 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fleischner, H.: The square of every two-connected graph is hamiltonian. Journal of Combinatorial Theory 16, 29–34 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fleischner, H.: On spanning subgraphs of a connected bridgeless graph and their application to dt graphs. Journal of Combinatorial Theory 16, 17–28 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lau, H.: Finding a Hamiltonian cycle in the square of a block. PhD thesis, McGill University (1980)

    Google Scholar 

  9. Lau, H.: Finding eps-graphs. Monatshefte für Math. 92, 37–40 (1981)

    Article  MATH  Google Scholar 

  10. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the stability of approximation for hamiltonian path problems. Technical Report TR 025/2004, Computer Science Department, University of L’Aquila (2004)

    Google Scholar 

  11. Andreae, T., Bandelt, H.J.: Performance guarantees for approximation algorithms depending on parametrized triangle inequalities. SIAM Journal on Discrete Mathematics 8, 1–16 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S. (2005). On the Stability of Approximation for Hamiltonian Path Problems. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30577-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24302-1

  • Online ISBN: 978-3-540-30577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics