Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions

  • Conference paper
SOFSEM 2005: Theory and Practice of Computer Science (SOFSEM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3381))

Abstract

Ordered binary decision diagrams (OBDDs) are a data structure for Boolean functions which supports many useful operations. It finds many applications in logic design, CAD, model checking, and symbolic graph algorithms. Nevertheless, many simple functions are known to have exponential OBDD size w. r. t. their number of variables. In order to investigate the limits of symbolic graph algorithms which work on OBDD-represented graph instances, it is useful to have simply-structured graphs whose OBDD representation has exponential size. Therefore, we consider fundamental arithmetic and storage access functions with exponential OBDD size and transfer these results to the graphs of these functions. Concretely, lower bounds for the graphs of integer multiplication, indirect storage access, and the hidden weighted bit function are presented. Finally, an exemplary application of the result for multiplication to the analysis of a symbolic all-pairs shortest-paths algorithm is sketched.

An extended version of this paper is available via http://ls2-www.cs.uni-dortmund.de/ sawitzki/LBotOSoGoSPF_Extended.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borodin, A., Cook, S.: A time–space tradeoff for sorting on a general sequential model of computation. SIAM Journal on Computing 11, 287–297 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hachtel, G., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  3. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1994)

    Google Scholar 

  4. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  5. Hachtel, G., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 networks. Formal Methods in System Design 10, 207–219 (1997)

    Article  Google Scholar 

  6. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Woelfel, P.: Symbolic topological sorting with OBDDs. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 671–680. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Sawitzki, D.: Experimental studies of symbolic shortest-path algorithms. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 482–497. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 154–167. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: SODA 2003, pp. 573–582 (2003)

    Google Scholar 

  11. Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: A linear solution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 554–564. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Bloem, R., Gabow, H., Somenzi, F.: An algorithm for strongly connected component analysis in n logn symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regular language containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 396–409. Springer, Heidelberg (1993)

    Google Scholar 

  15. Jin, H., Kuehlmann, A., Somenzi, F.: Fine-grain conjunction scheduling for symbolic reachability analysis. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 312–326. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Moon, I., Kukula, J., Ravi, K., Somenzi, F.: To split or to conjoin: The question in image computation. In: DAC 2000, pp. 23–28. ACM Press, New York (2000)

    Chapter  Google Scholar 

  17. Xie, A., Beerel, P.: Implicit enumeration of strongly connected components. In: ICCAD 1999, pp. 37–40. ACM Press, New York (1999)

    Google Scholar 

  18. Feigenbaum, J., Kannan, S., Vardi, M., Viswanathan, M.: Complexity of problems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science 1999, 1–25 (1999)

    MathSciNet  Google Scholar 

  19. Breitbart III, Y., Rosenkrantz, D.: On the size of binary decision diagrams representing Boolean functions. Theoretical Computer Science 145, 45–69 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal hashing. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 563–574. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal verification of multipliers. Formal Methods in System Design 22, 39–58 (2003)

    Article  MATH  Google Scholar 

  22. Jukna, S.: The graph of integer multiplication is hard for read-k-times networks. Technical Report 95–10, Universität Trier (1995)

    Google Scholar 

  23. Wegener, I.: Optimal lower bounds on the depth of polynomial-size threshold circuits for some arithmetic functions. Information Processing Letters 46, 85–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gergov, J.: Time-space tradeoffs for integer multiplication on various types of input oblivious sequential machines. Information Processing Letters 51, 265–269 (1994)

    Article  MathSciNet  Google Scholar 

  25. Alon, N., Maass, W.: Meanders and their applications in lower bound arguments. Journal of Computer and System Sciences 37, 118–129 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  27. Sawitzki, D.: On graphs with characteristic bounded-width functions. Technical report, Universität Dortmund (2004), Available via, http://ls2-www.cs.uni-dortmund.de/~sawitzki/OGwCBWF.pdf

  28. Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on randomized ordered read-once branching programs. Information and Computation 186, 78–89 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ponzio, S.: A lower bound for integer multiplication with read-once branching programs. SIAM Journal on Computing 28, 798–815 (1998)

    Article  MathSciNet  Google Scholar 

  30. Woelfel, P.: On the complexity of integer multiplication in branching programs with multiple tests and in read-once branching programs with limited nondeterminism. In: CCC 2002, pp. 80–89. IEEE Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawitzki, D. (2005). Lower Bounds on the OBDD Size of Graphs of Some Popular Functions. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30577-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24302-1

  • Online ISBN: 978-3-540-30577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics