Abstract
Ordered binary decision diagrams (OBDDs) are a data structure for Boolean functions which supports many useful operations. It finds many applications in logic design, CAD, model checking, and symbolic graph algorithms. Nevertheless, many simple functions are known to have exponential OBDD size w. r. t. their number of variables. In order to investigate the limits of symbolic graph algorithms which work on OBDD-represented graph instances, it is useful to have simply-structured graphs whose OBDD representation has exponential size. Therefore, we consider fundamental arithmetic and storage access functions with exponential OBDD size and transfer these results to the graphs of these functions. Concretely, lower bounds for the graphs of integer multiplication, indirect storage access, and the hidden weighted bit function are presented. Finally, an exemplary application of the result for multiplication to the analysis of a symbolic all-pairs shortest-paths algorithm is sketched.
An extended version of this paper is available via http://ls2-www.cs.uni-dortmund.de/ sawitzki/LBotOSoGoSPF_Extended.pdf.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borodin, A., Cook, S.: A time–space tradeoff for sorting on a general sequential model of computation. SIAM Journal on Computing 11, 287–297 (1982)
Hachtel, G., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Boston (1996)
McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1994)
Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadelphia (2000)
Hachtel, G., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 networks. Formal Methods in System Design 10, 207–219 (1997)
Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004)
Woelfel, P.: Symbolic topological sorting with OBDDs. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 671–680. Springer, Heidelberg (2003)
Sawitzki, D.: Experimental studies of symbolic shortest-path algorithms. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 482–497. Springer, Heidelberg (2004)
Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 154–167. Springer, Heidelberg (2004)
Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: SODA 2003, pp. 573–582 (2003)
Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: A linear solution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 554–564. Springer, Heidelberg (2003)
Bloem, R., Gabow, H., Somenzi, F.: An algorithm for strongly connected component analysis in n logn symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)
Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)
Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regular language containment. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 396–409. Springer, Heidelberg (1993)
Jin, H., Kuehlmann, A., Somenzi, F.: Fine-grain conjunction scheduling for symbolic reachability analysis. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 312–326. Springer, Heidelberg (2002)
Moon, I., Kukula, J., Ravi, K., Somenzi, F.: To split or to conjoin: The question in image computation. In: DAC 2000, pp. 23–28. ACM Press, New York (2000)
Xie, A., Beerel, P.: Implicit enumeration of strongly connected components. In: ICCAD 1999, pp. 37–40. ACM Press, New York (1999)
Feigenbaum, J., Kannan, S., Vardi, M., Viswanathan, M.: Complexity of problems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science 1999, 1–25 (1999)
Breitbart III, Y., Rosenkrantz, D.: On the size of binary decision diagrams representing Boolean functions. Theoretical Computer Science 145, 45–69 (1995)
Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal hashing. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 563–574. Springer, Heidelberg (2001)
Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal verification of multipliers. Formal Methods in System Design 22, 39–58 (2003)
Jukna, S.: The graph of integer multiplication is hard for read-k-times networks. Technical Report 95–10, Universität Trier (1995)
Wegener, I.: Optimal lower bounds on the depth of polynomial-size threshold circuits for some arithmetic functions. Information Processing Letters 46, 85–87 (1993)
Gergov, J.: Time-space tradeoffs for integer multiplication on various types of input oblivious sequential machines. Information Processing Letters 51, 265–269 (1994)
Alon, N., Maass, W.: Meanders and their applications in lower bound arguments. Journal of Computer and System Sciences 37, 118–129 (1988)
Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)
Sawitzki, D.: On graphs with characteristic bounded-width functions. Technical report, Universität Dortmund (2004), Available via, http://ls2-www.cs.uni-dortmund.de/~sawitzki/OGwCBWF.pdf
Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on randomized ordered read-once branching programs. Information and Computation 186, 78–89 (2003)
Ponzio, S.: A lower bound for integer multiplication with read-once branching programs. SIAM Journal on Computing 28, 798–815 (1998)
Woelfel, P.: On the complexity of integer multiplication in branching programs with multiple tests and in read-once branching programs with limited nondeterminism. In: CCC 2002, pp. 80–89. IEEE Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sawitzki, D. (2005). Lower Bounds on the OBDD Size of Graphs of Some Popular Functions. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-30577-4_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24302-1
Online ISBN: 978-3-540-30577-4
eBook Packages: Computer ScienceComputer Science (R0)