Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3385))

Abstract

This work presents game-based model checking for abstract models with respect to specifications in μ-calculus, interpreted over a 3-valued semantics. If the model checking result is indefinite (don’t know), the abstract model is refined, based on an analysis of the cause for this result. For finite concrete models our abstraction-refinement is fully automatic and guaranteed to terminate with a definite result true or false.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge (1999)

    Google Scholar 

  4. Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and machine leraning techniques. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 265. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus. Acta Inf. 27, 725–747 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems 19(2) (March 1997)

    Google Scholar 

  7. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc. 32th Symp. on Foundations of Computer Science (FOCS 1991), pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  8. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional mu-calculus. In: Logic in Computer Science, LICS (1986)

    Google Scholar 

  9. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 137–150. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kozen, D.: Results on the Propositional μ-calculus. TCS 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee, W., Pardo, A., Jang, J.-Y., Hachtel, G.D., Somenzi, F.: Tearing based automatic abstraction for CTL model checking. In: ICCAD, pp. 76–81 (1996)

    Google Scholar 

  14. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design 6, 11–45 (1995)

    Article  MATH  Google Scholar 

  15. Long, D., Browne, A., Clark, E., Jha, S., Marrero, W.: An improved algorithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)

    Google Scholar 

  16. Pardo, A., Hachtel, G.D.: Automatic abstraction techniques for propositional mu-calculus model checking. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

    Google Scholar 

  17. Pardo, A., Hachtel, G.D.: Incremental CTL model checking using BDD subsetting. In: Design Automation Conference (DAC), pp. 457–462 (1998)

    Google Scholar 

  18. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstraction-refinemnet. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 275–287. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

    Google Scholar 

  20. Stirling, C., Walker, D.J.: Local model checking in the modal mu-calculus. In: Díaz, J., Orejas, F. (eds.) TAPSOFT 1989 and CCIPL 1989. LNCS, vol. 352. Springer, Heidelberg (1989)

    Google Scholar 

  21. Tarski, A.: A lattice-theoretical fixpoint theorem and its application. Pacific J.Math. 5, 285–309 (1955)

    MATH  MathSciNet  Google Scholar 

  22. Winskel, G.: Model checking in the modal ν-calculus. In: International Colloquium on Automata, Languages, and Programming, ICALP (1989)

    Google Scholar 

  23. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grumberg, O., Lange, M., Leucker, M., Shoham, S. (2005). Don’t Know in the μ-Calculus. In: Cousot, R. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2005. Lecture Notes in Computer Science, vol 3385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30579-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30579-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24297-0

  • Online ISBN: 978-3-540-30579-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics