Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Pattern-Based Predictive Indexing Method for Distributed Trajectory Databases

  • Conference paper
Information Networking. Convergence in Broadband and Mobile Networking (ICOIN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3391))

Included in the following conference series:

  • 982 Accesses

Abstract

Recently, it has become possible to collect large amounts of trajectory data of moving objects by using sensor networks. To manage such trajectory data, we have developed a distributed trajectory database composed of a server and many sensor nodes deployed over wide areas. The server manages the trajectory data of each moving object by using indices. However, since each sensor node cannot send trajectory data to the server all the time, the server does not always manage indices for the current trajectory data. In other words, the server is delayed in answering queries for current data because it has to forward each query to the sensor nodes to answer them. This is defined as a delay problem. To avoid this problem, we propose a pattern-based predictive indexing method for the database to answer queries in real time. This method uses past motion patterns of moving objects to predict the future locations of moving objects. In this paper, we describe the method and evaluate it with practical trajectory data. We conclude that the technique can predict the future locations of moving objects well enough in real time and show optimal parameters for prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Laube, P., Imfeld, S.: Analyzing relative motion within groups of trackable moving point objects. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 132–144. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Vazirgiannis, M., Wolfson, O.: A spatio temporal model and language for moving objects on road networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: Proceedings of the 29th VLDB Conference, Berlin, German, pp. 12–23 (2003)

    Google Scholar 

  4. Yanagisawa, Y., Akahani, J.: Shape-based similarity query for trajectory of mobile objects. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 63–77. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proceedings of SIGMOD Conference, pp. 331–342 (2000)

    Google Scholar 

  6. Guttman, O.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of SIGMOD, Conference, pp. 47–57 (1984)

    Google Scholar 

  7. Zhang, Q., Lin, X.: Clustering moving objects for spatio-temporal selectivity estimation. In: Proceedings of the fifteenth conference on Australasian database, vol. 27, pp. 123–130 (2004)

    Google Scholar 

  8. Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing animated objects using spatiotemporal access methods. Knowledge and Data Engineering 13, 758–777 (2001)

    Article  Google Scholar 

  9. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proceedings of Symposium on Principles of Database Systems, pp. 175–186 (2000)

    Google Scholar 

  10. Tao, Y., Sun, J., Papadias, D.: Selectivity estimation for predictive spatio-temporal queries. In: Proceedings of International Conference on Data Engineering, pp. 417–428 (2003)

    Google Scholar 

  11. Choi, Y.J., Chung, C.W.: Selectivity estimation for spatio-temporal queries to moving objects. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data, Madison, Wisconsin, USA. ACM SIGMOD international conference on Management of data table of contents, pp. 440–451. ACM Press, New York (2002)

    Chapter  Google Scholar 

  12. Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: On-line discovery of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J.: Performance evaluation of spatio-temporal selectivity estimation techniques. In: Proceedings of 15th International Conference on Scientific and Statistical Database Management, Cambridge, Massachusetts, USA, pp. 202–211. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katsuda, K., Yanagisawa, Y., Satoh, T. (2005). A Pattern-Based Predictive Indexing Method for Distributed Trajectory Databases. In: Kim, C. (eds) Information Networking. Convergence in Broadband and Mobile Networking. ICOIN 2005. Lecture Notes in Computer Science, vol 3391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30582-8_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30582-8_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24467-7

  • Online ISBN: 978-3-540-30582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics