Abstract
Given n red and n blue points in convex position in the plane, we show that there exists a noncrossing alternating path of length \(n+c\sqrt{n\over \log n}\). We disprove a conjecture of Erdős by constructing an example without any such path of length greater than \({4\over 3}n+c'\sqrt{n}\).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Abellanas, M., Garcia, J., Hernández, G., Noy, M., Ramos, P.: Bipartite embeddings of trees in the plane. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 141–148. Springer, Heidelberg (1997); Also in: Discrete Appl. Math. 93, 141–148 (1999)
Abellanas, M., Garcia, A., Hurtado, F., Tejel, J.: Caminos alternantes. In: X Encuentros de Geometría Computacional, Sevilla, pp. 7–12 (2003) (in Spanish)
Bárány, I., Matoušek, J.: Simultaneous partitions of measures by k-fans. Discrete Comput. Geom. 25, 317–334 (2001)
Bespamyatnikh, S., Kirkpatrick, D., Snoeyink, J.: Generalizing ham sandwich cuts to equitable subdivisions. Discrete Comput. Geom. 24, 605–622 (2000)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)
Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20/4, 63–86 (1989)
Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points (solution to Problem E3341). Amer. Math. Monthly 98, 165–166 (1991)
Ikeba, Y., Perles, M., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points on the plane. Discrete Comput. Geom. 11, 51–63 (1994)
Kaneko, A., Kano, M.: Discrete geometry on red and blue poins in the plane – a survey. In: Aronov, B., et al. (eds.) Discrete and Computational Geometry, pp. 551–570. Springer, Berlin (2004)
Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the plane. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342, pp. 99–111 (2004)
Kaneko, A., Kano, M., Yoshimoto, K.: Alternating Hamiltonian cycles with minimum number of crossings in the plane. Internat. J. Comput. Geom. Appl. 10, 73–78 (2000)
Károlyi, G., Pach, J., Tóth, G., Valtr, P.: Ramsey-type results for geometric graphs II. Discrete Comput. Geom. 20, 375–388 (1998)
Merino, C., Salazar, G., Urrutia, J.: On the length of longest alternating paths for multicolored point sets in convex position (manuscript)
Sakai, T.: Balanced convex partitions of measures in R 2. Graphs and Combinatorics 18, 169–192 (2002)
Tokunaga, S.: On a straight-line embedding problem of graphs. Discrete Math. 150, 371–378 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kynčl, J., Pach, J., Tóth, G. (2005). Long Alternating Paths in Bicolored Point Sets. In: Pach, J. (eds) Graph Drawing. GD 2004. Lecture Notes in Computer Science, vol 3383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31843-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-31843-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24528-5
Online ISBN: 978-3-540-31843-9
eBook Packages: Computer ScienceComputer Science (R0)