Abstract
We introduce and study Recursive Markov Chains (RMCs), which extend ordinary finite state Markov chains with the ability to invoke other Markov chains in a potentially recursive manner. They offer a natural abstract model for probabilistic programs with procedures, and are a probabilistic version of Recursive State Machines. RMCs generalize Stochastic Context-Free Grammars (SCFG) and multi-type Branching Processes, and are intimately related to Probabilistic Pushdown Systems. We focus here on termination and reachability analysis for RMCs. We present both positive and negative results for the general class of RMCs, as well as for important subclasses including SCFGs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 304–313. Springer, Heidelberg (2001)
Abney, S., McAllester, D., Pereira, F.: Relating probabilistic grammars and automata. In: Proc. 37th Ann. Ass. for Comp. Linguistics, pp. 542–549 (1999)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: App’s to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Benedikt, M., Godefroid, P., Reps, T.: Model checking of unrestricted hierarchical state machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 652–666. Springer, Heidelberg (2001)
Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. of the ACM 43(6), 1002–1045 (1996)
Basu, S., Pollack, F., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)
Booth, T.L., Thompson, R.A.: Applying probability measures to abstract languages. IEEE Transactions on Computers 22(5), 442–450 (1973)
Canny, J.: Some algebraic and geometric computations in PSPACE. In: Prof. of 20th ACM STOC, pp. 460–467 (1988)
Chi, Z., Geman, S.: Estimation of probabilistic context-free grammars. In: Computational Linguistics (1997)
Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)
Esparza, J., Kučera, A.: Personal communication (2004)
Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: LICS 2004 (2004)
Everett, C.J., Ulam, S.: Multiplicative systems, part i., ii, and iii. Technical Report 683,690,707, Los Alamos Scientific Laboratory (1948)
Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic systems. Technical report, School of Informatics, U. of Edinburgh (2004) (submitted)
Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of non-linear equations. Technical report, School of Informatics, University of Edinburgh (2004) (Full paper)
Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: 8th ACM STOC, pp. 10–22 (1976)
Grenander, U.: Lectures on Pattern Theory, vol. 1. Springer, Heidelberg (1976)
Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
Jagers, P.: Branching Processes with Biological Applications. Wiley, Chichester (1975)
Kolmogorov, A.N., Sevastyanov, B.A.: The calculation of final probabilities for branching random processes. Dokaldy 56, 783–786 (1947) (Russian)
Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, London (1985)
Malajovich, G.: An effective version of Kronecker’s theorem on simultaneous diophantine equations. Technical report, City U. of Hong Kong (1996)
Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)
Ortega, J.M., Rheinbolt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, London (1970)
Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. parts i,ii, iii. J. of Symbolic Computation, 255–352 (1992)
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Heidelberg (1993)
Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22(23), 5112–5120 (1994)
Sevastyanov, B.A.: The theory of branching processes. Uspehi Mathemat. Nauk 6, 47–99 (1951) (in Russian)
Tiwari, P.: A problem that is easier to solve on the unit-cost algebraic ram. Journal of Complexity, 393–397 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Etessami, K., Yannakakis, M. (2005). Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of Nonlinear Equations. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-31856-9_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24998-6
Online ISBN: 978-3-540-31856-9
eBook Packages: Computer ScienceComputer Science (R0)