Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Core of a Countably Categorical Structure

  • Conference paper
STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

A relational structure is a core, if all endomorphisms are embeddings. This notion is important for the classification of the computational complexity of constraint satisfaction problems. It is a fundamental fact that every finite structure S has a core, i.e., S has an endomorphism e such that the structure induced by e(S) is a core; moreover, the core is unique up to isomorphism.

We prove that this result remains valid for ω-categorical structures, and prove that every ω-categorical structure has a core, which is unique up to isomorphism, and which is again ω-categorical. We thus reduced the classification of the complexity of constraint satisfaction problems with ω-categorical templates to the classifiaction of constraint satisfaction problems where the templates are ω-categorical cores. If Γ contains all primitive positive definable relations, then the core of Γ admits quantifier elimination. We discuss further consequences for constraint satisfaction with ω-categorical templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D.: The complexity of G-free colourability. Discrete Mathematics 165, 21–30 (1997)

    Article  MathSciNet  Google Scholar 

  2. Adeleke, S., Neumann, P.M.: Structure of partially ordered sets with transitive automorphism groups. AMS Memoir 57(334) (1985)

    Google Scholar 

  3. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  5. Bauslaugh, B.: Core-like properties of infinite graphs and structures. Disc. Math. 138(1), 101–111 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauslaugh, B.: Cores and compactness of infinite directed graphs. Journal of Combinatorial Theory, Series B 68(2), 255–276 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bodirsky, M.: Constraint satisfaction with infinite domains. Dissertation an der Humboldt-Universität zu Berlin (2004)

    Google Scholar 

  8. Bodirsky, M., Kutz, M.: Pure dominance constraints. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 287–298. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 44–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of LICS 2003, pp. 321–330 (2003)

    Google Scholar 

  11. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras (2003) (submitted)

    Google Scholar 

  12. Cameron, P.J.: Oligomorphic Permutation Groups. Cambridge Univ. Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  13. Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) The Mathematics of Paul Erdõs (1996)

    Google Scholar 

  14. Chang, Keisler: Model theory. Princeton University Press, Princeton (1977)

    Google Scholar 

  15. Cherlin, G.: The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments. AMS Memoir 131(621) (January 1998)

    Google Scholar 

  16. Cornell, T.: On determining the consistency of partial descriptions of trees. In: Proceedings of the ACL, pp. 163–170 (1994)

    Google Scholar 

  17. Droste, M.: Structure of partially ordered sets with transitive automorphism groups. AMS Memoir 57(334) (1985)

    Google Scholar 

  18. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)

    Article  MathSciNet  Google Scholar 

  19. Garey, M., Johnson, D.: A guide to NP-completeness. CSLI Press (1978)

    Google Scholar 

  20. Gusfield, D.: Algorithms on strings, trees, and sequences. Computer Science and Computational Biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  21. Hell, P., Nesetril, J.: The core of a graph. Discrete Math. 109, 117–126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  24. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. JACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jeavons, P., Jonsson, P., Krokhin, A.A.: Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. JACM 50(5), 591–640 (2003)

    Article  MathSciNet  Google Scholar 

  26. Lachlan, A.H.: Stable finitely homogeneous structures: A survey. In: Algebraic Model Theory. NATO ASI Series, vol. 496, pp. 145–159 (1996)

    Google Scholar 

  27. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. JACM 42(1), 43–66 (1995)

    Article  MATH  Google Scholar 

  28. Schaeffer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  29. Steel, M.: The complexity of reconstructing trees from qualitative charaters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodirsky, M. (2005). The Core of a Countably Categorical Structure. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics