Abstract
Evolutionary multicriteria optimization has traditionally concentrated on problems comprising 2 or 3 objectives. While engineering design problems can often be conveniently formulated as multiobjective optimization problems, these often comprise a relatively large number of objectives. Such problems pose new challenges for algorithm design, visualisation and implementation. Each of these three topics is addressed. Progressive articulation of design preferences is demonstrated to assist in reducing the region of interest for the search and, thereby, simplified the problem. Parallel coordinates have proved a useful tool for visualising many objectives in a two-dimensional graph and the computational grid and wireless Personal Digital Assistants offer technological solutions to implementation difficulties arising in complex system design.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Athans, M., Falb, P.: Optimal Control. McGraw-Hill, New York (1966)
Branke, T., Kaußler, T., Schmeck, H.: Guidance in evolutionary multiobjective optimization. Advances in Engineering Software 32, 499–507 (2001)
Branke, J., Deb, K.: Integrating User Preferences into Evolutionary Multi-Objective Optimization. KanGal Report Number 2004004
Censor, Y.: Pareto optimality in multiobjective problems. Applied Mathematics and Optimization 4, 41–59 (1977)
Coello, C.A.C.: Handling preferences in evolutionary multiobjective optimization: a survey. In: IEEE Neural Networks Council (ed.) Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), vol. 1, pp. 30–37. IEEE Service Center, Piscataway (2000)
Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)
Cvetkovic, D., Parmee, I.C.: Preferences and their application in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 6(1), 42–57 (2002)
Deb, K.: Optimization for engineering design: Algorithms and examples. Prentice-Hall, New Delhi (1995)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2000) (2001a)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Deb, K.: Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 263–292. Springer, London (2003)
Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)
Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems, in J. Keller and O. Nasraoui (eds), Proceedings of the 2002 NAFIPS-FLINT International Conference, IEEE Service Center, Piscataway, New Jersey, pp. 233–238 (2002)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kauffman Publishers, San Mateo (1993)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms — Part I: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998a)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms — Part II: An application example. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 38–47 (1998b)
Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann, San Francisco (1998)
Gembicki, F.W.: Vector optimization for control with performance and parameter sensitivity indices, PhD Dissertation, Case Western Reserve Univ., Cleveland, Ohio, USA (1974)
Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)
Leary, S.J., Keane, A.J.: Global approximation and optimisation using adjoint computational fluid dynamics codes. AIAA journal 42(3), 631–641 (2004)
Lygoe, R.J., Fleming, P.J.: An Understanding of Fonseca & Fleming’s Preferability Operator with respect to the Decision Making Process in Multi-Objective Optimisation, ACSE Research Report 880, University of Sheffield, Sheffield, UK
Parker, S.G., Johnson, C.R., Beazley, D.: Computational steering software systems and strategies. IEEE Computational Science & Engineering 4(4), 50–59 (1997)
Purshouse, R.C., Fleming, P.J.: 2003a An adaptive divide-and-conquer methodology for evolutionary multi-criterion optimisation, in C. M. Fonseca, P. J. Fleming, E. Zitzler (2003)
Purshouse, R.C.: On the Evolutionary Optimisation of Many Objectives, PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK (2003)
Shenfield, A., Fleming, P.J.: A service oriented Architecture for Engineering Design Technical Report 877, Department of Automatic Control and Systems Engineering, University of Sheffield, UK
Shenfield, A., Alkarouri, M., Fleming, P.J.: Computational Steering of a Multi-Objective Genetic Algorithm using a PDA, 878, Department of Automatic Control and Systems Engineering, University of Sheffield, UK
Scott, D.W.: Multivariate Density Estimation: Theory. Practice, and Visualization. Wiley, New York (1992)
Tan, K.C., Khor, E.F., Lee, T.H., Sathikannan, R.: An evolutionary algorithm with advanced goal and priority specification for multi-objective optimization. Journal of Artificial Intelligence Research 18, 183–215 (2003)
Todd, D.S., Sen, P.: Directed multiple objective search of design spaces using genetic algorithms and neural networks. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 2, pp. 1738–1743. Morgan Kaufmann Publishers, San Francisco (1999)
Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85, 664–675 (1990)
Zakian, V., Al-Naib, U.: Design of dynamical control systems by the method of inequalities. Proc. IEE 120, 1421–1427 (1973)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fleming, P.J., Purshouse, R.C., Lygoe, R.J. (2005). Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-31880-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24983-2
Online ISBN: 978-3-540-31880-4
eBook Packages: Computer ScienceComputer Science (R0)