Abstract
This paper describes a new evolutionary algorithm for image segmentation. The evolution involves the colonization of a bidimensional world by a number of populations. The individuals, belonging to different populations, compete to occupy all the available space and adapt to the local environmental characteristics of the world. We present experiments with synthetic images, where we show the efficiency of the proposed method and compare it to other segmentation algorithm, and an application to medical images. Reported results indicate that the segmentation of noise images is effectively improved. Moreover, the proposed method can be applied to a wide variety of images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26, 1277–1294 (1993)
Jain, A.K.: Cluster analysis. In: Young, T.Y., Fu, K.S. (eds.) Handbook of Pattern Recognition and Image Processing, pp. 33–57. Academic Press, London (1986)
Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 248–255 (1986)
Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms: with application to image processing and pattern recognition. World Scientific, Singapore (1996)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Bezdek, J.C., Hathaway, R.J.: Optimization of fuzzy clustering criteria using genetic algorithms. In: Proc. 1st IEEE Conf. Evolutionary Computation, pp. 589–599 (1994)
Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation 3, 103–112 (1999)
Ballerini, L., Bocchi, L., Johansson, C.B.: Image segmentation by a genetic fuzzy c-means algorithm using color and spatial information. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 260–269. Springer, Heidelberg (2004)
Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Transactions on Systems, Man and Cybernetics 25, 1543–1567 (1995)
Bhandarkar, S.M., Zhang, H.: Image segmentation using evolutionary computation. IEEE Transactions on Evolutionary Computation 3, 1–21 (1999)
Andrey, P.: Selectionist relaxation: Genetic algorithms applied to image segmentation. Image and Vision Computing 17, 175–187 (1999)
Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 544–551 (1999)
Veenman, C.J., Reinders, M.J.T., Backer, E.: A cellular coevolutionary algorithm for image segmentation. IEEE Transactions on Image Processing 12, 304–313 (2003)
Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass behaviour effect study on pattern recognition. In: Proc. of ANTS 2000 - 2nd Int. Workshop on Ant Algorithms (From Ant Colonies to Artificial Ants), pp. 113–116 (2000)
Gardner, M.: The fantastic combinations of John Conway’s new solitaire game “life”. Scientifican American 223, 120–123 (1970)
Lim, Y.W., Lee, S.U.: On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition 23, 1935–1952 (1990)
Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)
Hathaway, R.J., Bezdek, J.C.: Optimization of clustering criteria by reformulation. IEEE Transactions on Fuzzy Systems 3, 241–254 (1995)
Stevens, A., Lowe, J.: Human Histology, C.V. Mosby, 2nd edn. (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bocchi, L., Ballerini, L., Hässler, S. (2005). A New Evolutionary Algorithm for Image Segmentation. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-32003-6_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25396-9
Online ISBN: 978-3-540-32003-6
eBook Packages: Computer ScienceComputer Science (R0)