Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hand Tracking Using a Quadric Surface Model and Bayesian Filtering

  • Conference paper
Mathematics of Surfaces

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2768))

Abstract

Within this paper a technique for model-based 3D hand tracking is presented. A hand model is built from a set of truncated quadrics, approximating the anatomy of a real hand with few parameters. Given that the projection of a quadric onto the image plane is a conic, the contours can be generated efficiently. These model contours are used as shape templates to evaluate possible matches in the current frame. The evaluation is done within a hierarchical Bayesian filtering framework, where the posterior distribution is computed efficiently using a tree of templates. We demonstrate the effectiveness of the technique by using it for tracking 3D articulated and non-rigid hand motion from monocular video sequences in front of a cluttered background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, K.N., Chao, E.Y., Cooney, W.P., Linscheid, R.L.: Normative model of human hand for biomechanical analysis. J. Biomechanics 12, 775–788 (1979)

    Article  Google Scholar 

  2. Athitsos, V., Sclaroff, S.: Estimating 3D hand pose from a cluttered image. In: Proc. Conf. Computer Vision and Pattern Recognition, Madison, USA (June 2003) (to appear)

    Google Scholar 

  3. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techniques for image matching. In: Proc. 5th Int. Joint Conf. Artificial Intelligence, pp. 659–663 (1977)

    Google Scholar 

  4. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. Pattern Analysis and Machine Intell. 10(6), 849–865 (November 1988)

    Article  Google Scholar 

  5. Cipolla, R., Giblin, P.J.: Visual Motion of Curves and Surfaces. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Cross, G., Zisserman, A.: Quadric reconstruction from dual-space geometry. In: Proc. 6th Int. Conf. on Computer Vision, Bombay, India, pp. 25–31 (January 1998)

    Google Scholar 

  7. Gavrila, D.M.: Pedestrian detection from a moving vehicle. In: Proc. 6th European Conf. on Computer Vision, Dublin, Ireland, vol. II, pp. 37–49 (June/July 2000)

    Google Scholar 

  8. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Heap, A.J., Hogg, D.C.: Towards 3-D hand tracking using a deformable model. In: 2nd International Face and Gesture Recognition Conference, Killington, USA, pp. 140–145 (October 1996)

    Google Scholar 

  10. Huttenlocher, D.P., Noh, J.J., Rucklidge, W.J.: Tracking non-rigid objects in complex scenes. In: Proc. 4th Int. Conf. on Computer Vision, Berlin, pp. 93–101 (May 1993)

    Google Scholar 

  11. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81(3), 231–268 (2001)

    Article  MATH  Google Scholar 

  12. Olson, C.F., Huttenlocher, D.P.: Automatic target recognition by matching oriented edge pixels. Transactions on Image Processing 6(1), 103–113 (1997)

    Article  Google Scholar 

  13. Rehg, J.M.: Visual Analysis of High DOF Articulated Objects with Application to Hand Tracking. PhD thesis, Carnegie Mellon University, Dept. of Electrical and Computer Engineering (1995) TR CMU-CS-95-138

    Google Scholar 

  14. Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-D hand posture estimation based on 2-D appearance retrieval using monocular camera. In: Proc. Int. WS. RATFG-RTS, Vancouver, Canada, pp. 23–30 (July 2001)

    Google Scholar 

  15. Stenger, B., Mendonça, P.R.S., Cipolla, R.: Model based 3D tracking of an articulated hand. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. II, Kauai, USA, pp. 310–315 (December 2001)

    Google Scholar 

  16. Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R.: Hand tracking using a tree-based estimator. Technical Report CUED/F-INFENG/TR 456, University of Cambridge, Department of Engineering (2003)

    Google Scholar 

  17. Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: Proc. Conf. Computer Vision and Pattern Recognition, Madison, USA (June 2003) (to appear)

    Google Scholar 

  18. Toyama, K., Blake, A.: Probabilistic tracking with exemplars in a metric space. Int. Journal of Computer Vision, 9–19 (June 2002)

    Google Scholar 

  19. Wu, Y., Huang, T.S.: Capturing articulated human hand motion: A divide-and conquer approach. In: Proc. 7th Int. Conf. on Computer Vision, Corfu, Greece, vol. I, pp. 606–611 (September 1999)

    Google Scholar 

  20. Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: Proc. 8th Int. Conf. on Computer Vision, Vancouver, Canada, vol. II, pp. 426–432 (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cipolla, R., Stenger, B., Thayananthan, A., Torr, P.H.S. (2003). Hand Tracking Using a Quadric Surface Model and Bayesian Filtering. In: Wilson, M.J., Martin, R.R. (eds) Mathematics of Surfaces. Lecture Notes in Computer Science, vol 2768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39422-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39422-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20053-6

  • Online ISBN: 978-3-540-39422-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics