Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incremental Feature Extraction Based on Empirical Kernel Map

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2871))

Included in the following conference series:

  • 548 Accesses

Abstract

A new incremental kernel principal component analysis is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis is that the computation becomes prohibitive when the data set is large . Another problem is that, in order to update the eigenvectors with another data, the whole decomposition from scratch should be recomputed. The proposed method overcomes these problems by incrementally update eigenspace and using empirical kernel map as kernel function. The proposed method is more efficient in memory requirement than a batch kernel principal component and can be easily improved by re-learning the data. In our experiments we show that proposed method is comparable in performance to a batch kernel principal component for the classification problem on nonlinear data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analysers. Neural Computation 11(2), 443–482 (1998)

    Article  Google Scholar 

  2. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal 37(2), 233–243 (1991)

    Article  Google Scholar 

  3. Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, Inc., New York (1996)

    MATH  Google Scholar 

  4. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  5. Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller, K.R., Ratsch, G., Smola, A.J.: Input Space versus Feature Space in Kernel-based Methods. IEEE Transactions on Neural Networks 10, 1000–1017 (1999)

    Article  Google Scholar 

  6. Mika, S.: Kernel algorithms for nonlinear signal processing in feature spaces. Master’s thesis, Technical University of Berlin (November 1998)

    Google Scholar 

  7. Hall, P., Marshall, D., Martin, R.: Incremental eigenalysis for classification. In: British Machine Vision Conference, September 1998, vol. 1, pp. 286–295 (1998)

    Google Scholar 

  8. Winkeler, J., Manjunath, B.S., Chandrasekaran, S.: Subset selection for active object recognition. In: CVPR, vol. 2, pp. 511–516. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  9. Murakami, H., Kumar, B.V.K.V.: Efficient calculation of primary images from a set of images. IEEE PAMI 4(5), 511–515 (1982)

    Google Scholar 

  10. Vapnik, V.N.: Statistical learning theory. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  11. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  12. Suykens, J.A.K., Vandewalle, J.: Multiclass Least Squares Support Vector Machines. In: Proc. International Joint Conference on Neural Networks (IJCNN 1999), Washington, DC (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, B.J., Shim, J.Y., Hwang, C.H., Kim, I.K., Song, J.H. (2003). Incremental Feature Extraction Based on Empirical Kernel Map. In: Zhong, N., RaÅ›, Z.W., Tsumoto, S., Suzuki, E. (eds) Foundations of Intelligent Systems. ISMIS 2003. Lecture Notes in Computer Science(), vol 2871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39592-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39592-8_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20256-1

  • Online ISBN: 978-3-540-39592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics