Abstract
A new incremental kernel principal component analysis is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis is that the computation becomes prohibitive when the data set is large . Another problem is that, in order to update the eigenvectors with another data, the whole decomposition from scratch should be recomputed. The proposed method overcomes these problems by incrementally update eigenspace and using empirical kernel map as kernel function. The proposed method is more efficient in memory requirement than a batch kernel principal component and can be easily improved by re-learning the data. In our experiments we show that proposed method is comparable in performance to a batch kernel principal component for the classification problem on nonlinear data set.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analysers. Neural Computation 11(2), 443–482 (1998)
Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal 37(2), 233–243 (1991)
Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, Inc., New York (1996)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller, K.R., Ratsch, G., Smola, A.J.: Input Space versus Feature Space in Kernel-based Methods. IEEE Transactions on Neural Networks 10, 1000–1017 (1999)
Mika, S.: Kernel algorithms for nonlinear signal processing in feature spaces. Master’s thesis, Technical University of Berlin (November 1998)
Hall, P., Marshall, D., Martin, R.: Incremental eigenalysis for classification. In: British Machine Vision Conference, September 1998, vol. 1, pp. 286–295 (1998)
Winkeler, J., Manjunath, B.S., Chandrasekaran, S.: Subset selection for active object recognition. In: CVPR, vol. 2, pp. 511–516. IEEE Computer Society Press, Los Alamitos (1999)
Murakami, H., Kumar, B.V.K.V.: Efficient calculation of primary images from a set of images. IEEE PAMI 4(5), 511–515 (1982)
Vapnik, V.N.: Statistical learning theory. John Wiley & Sons, New York (1998)
Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9, 293–300 (1999)
Suykens, J.A.K., Vandewalle, J.: Multiclass Least Squares Support Vector Machines. In: Proc. International Joint Conference on Neural Networks (IJCNN 1999), Washington, DC (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, B.J., Shim, J.Y., Hwang, C.H., Kim, I.K., Song, J.H. (2003). Incremental Feature Extraction Based on Empirical Kernel Map. In: Zhong, N., RaÅ›, Z.W., Tsumoto, S., Suzuki, E. (eds) Foundations of Intelligent Systems. ISMIS 2003. Lecture Notes in Computer Science(), vol 2871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39592-8_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-39592-8_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20256-1
Online ISBN: 978-3-540-39592-8
eBook Packages: Springer Book Archive