Abstract
Techniques of automatic extraction of related words are of great importance in many applications such as query expansion and automatic thesaurus construction. In this paper, a method of extracting related words is proposed basing on the statistical information about the co-occurrences of words from huge corpora. The mutual information is one of such statistical measures and has been used for application mainly in natural language processing. A drawback is, however, the mutual information depends mainly on frequencies of words. To overcome this difficulty, we propose as a new measure a normalize deviation of mutual information. We also reveal a correspondence between word ambiguity and related words using word relation graphs constructed using this measure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Voorhees, E.M.: On expanding query vectors with lexically related words. In: Proceedings of the Second Text Retrieval Conference, pp. 223–231 (1994)
Jing, Y., Croft, B.: An association thesaurus for information retrieval. In: Proceedings of RIAO, pp. 146–160 (1994)
Fellbaum, C.: WordNet: An electronic lexical database. MIT press, Cambridge (1998)
Lin, D., Pantel, P.: DIRT - Discovery of Inference Rules from Text. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2001, pp. 323–328 (2001)
Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Computational Linguistics 16(1), 22–29 (1990)
Dunning, T.: Accurate Methods for the Statistics of Surprise and Coincidence. Computational Linguistics 19(1), 61–74 (1993)
Aizawa, A.: The Feature Quantity: An Information Theoretic Perspective of Tfidf-like Measures. In: Proceeding of ACM SIGIR 2000, pp. 104–111 (2000)
Ohsawa, Y., Benson, N.E., Tachida, M.: KeyGraph: Automatic Indexing by Co-occurrence Graph based on Building Construction Metaphor. In: Proceeding of IEEE Advanced Digital Library Conference, pp. 12–18 (1999)
Matsuo, Y., Ishizuka, M.: Keyword Extraction from a Single Document usingWord Co-occurrence Statistical Information. In: Proceeding of 16th Int’l FLAIRS Conference, pp. 392–396 (2003)
Widdows, D., Dorow, B.: A Graph Model for Unsupervised Lexical Acquisition. In: 19th International Conference on Computational Linguistics, pp. 1093– 1099 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sugimachi, T., Ishino, A., Takeda, M., Matsuo, F. (2003). A Method of Extracting Related Words Using Standardized Mutual Information. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds) Discovery Science. DS 2003. Lecture Notes in Computer Science(), vol 2843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39644-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-39644-4_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20293-6
Online ISBN: 978-3-540-39644-4
eBook Packages: Springer Book Archive