Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Directly Invertible Nonlinear Divisive Normalization Pyramid for Image Representation

  • Conference paper
Visual Content Processing and Representation (VLBV 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2849))

Included in the following conference series:

Abstract

We present a multiscale nonlinear image representation that permits an efficient coding of natural images. The input image is first decomposed into a set of subbands at multiple scales and orientations using near-orthogonal symmetric quadrature mirror filters. This is followed by a nonlinear “divisive normalization” stage, in which each linear coefficient is divided by a value computed from a small set of neighboring coefficients in space, orientation and scale. This neighborhood is chosen to allow this nonlinear operation to be efficiently inverted. The parameters of the normalization operation are optimized in order to maximize the independence of the normalized responses for natural images. We demonstrate the near-independence of these nonlinear responses, and suggest a number of applications for which this representation should be well suited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  3. Bell, J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  4. Wegmann, B., Zetzsche, C.: Statistical dependence between orientation filter outputs used in an human vision based image code. In: Proc. SPIE Vis. Commun. Image Processing, vol. 1360, pp. 909–922 (1990)

    Google Scholar 

  5. Simoncelli, E.P.: Statistical models for images: compression, restoration and synthesis. In: Asilomar Conf. Signals, Systems, Comput., pp. 673–679 (1997)

    Google Scholar 

  6. Simoncelli, E.P., Schwartz, O.: Modeling surround suppression in V1 neurons with a statistically-derived normalization model. Advances in Neural Information Processing Systems 11, 153–159 (1999)

    Google Scholar 

  7. Schwartz, O., Simoncelli, E.P.: Natural signal statistics and sensory gain control. Nature neuroscience 4(8), 819–825 (2001)

    Article  Google Scholar 

  8. Wainwright, M.J., Schwartz, O., Simoncelli, E.P.: Natural image statistics and divisive normalization: modeling nonlinearities and adaptation in cortical neurons. In: Rao, R., Olshausen, B., Lewicki, M. (eds.) Statistical Theories of the Brain. ch. 10, pp. 203–222. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Albrecht, D.G., Geisler, W.S.: Motion sensitivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531–546 (1991)

    Article  Google Scholar 

  10. Heeger, D.J.: Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181–198 (1992)

    Article  Google Scholar 

  11. Foley, J.M.: Human luminance pattern mechanisms: masking experiments require a new model. Journal of the Optical Society of America A 11, 1710–1719 (1994)

    Article  Google Scholar 

  12. Malo, J., Simoncelli, E.P., Epifanio, I., Navarro, R.: Nonlinear image representation for efficient coding (2003) (to be submitted)

    Google Scholar 

  13. Egger, O., Li, W., Kunt, M.: High compression image coding using an adaptive morphological subband decomposition. Proceedings of the IEEE 83, 272–287 (1995)

    Article  Google Scholar 

  14. Hampson, F.J., Pesquet, J.C.: M-band nonlinear subband decompositions with perfect reconstruction. IEEE Transactions on Image Processing 7, 1547–1560 (1998)

    Article  Google Scholar 

  15. de Queiroz, R.L., Florencio, D.A.F., Schafer, R.W.: Nonexpansive pyramid for image coding using a nonlinear filterbank. IEEE Transactions on Image Processing 7, 246–252 (1998)

    Article  Google Scholar 

  16. Salembier, P., Kunt, M.: Size-sensitive multiresolution decompositions of images with rank order based filters. Signal Processing 27, 205–241 (1992)

    Article  Google Scholar 

  17. Bangham, J.A., Campbell, T.G., Aldridge, R.V.: Multiscale median and morphological filters for 2D pattern recognition. Signal Processing 38, 387–415 (1994)

    Article  Google Scholar 

  18. Arce, G.R., Tian, M.: Order statistic filter banks. IEEE Transactions on Image Processing 5, 827–837 (1996)

    Article  Google Scholar 

  19. Egger, O., Li, W.: Very low bit rate image coding using morphological operators and adaptive decompositions. In: Proceedings of the IEEE International Conference on Image Processing, pp. 326–330 (1994)

    Google Scholar 

  20. Egger, O., Fleury, P., Ebrahimi, T., Kunt, M.: High-performance compression of visual information – A tutorial review: I. Still pictures. Proceedings of the IEEE 87, 976–1013 (1999)

    Article  Google Scholar 

  21. Goutsias, J., Heijmans, A.M.: Nonlinear multiresolution signal decomposition schemes - Part II: Morphological wavelets. IEEE Transactions on Image Processing 9, 1862–1913 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Simoncelli, E.P., Adelson, E.H.: Subband image coding. In: Woods, J.W. (ed.) Subband Transforms. ch. 4, pp. 143–192. Kluwer Academic Publishers, Norwell (1990)

    Google Scholar 

  23. Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. Journal of Electronic Imaging 7(1), 166–173 (1998)

    Article  Google Scholar 

  24. Wainwright, M.J., Simoncelli, E.P.: Scale mixtures of Gaussians and the statistics of natural images. Advances in Neural Information Processing Systems 12, 855–861 (2000)

    Google Scholar 

  25. Buccigrossi, R.W., Simoncelli, E.P.: Image compression via joint statistical characterization in the wavelet domain. IEEE Transactions on Image Processing 8(12), 1688–1701 (1999)

    Article  Google Scholar 

  26. Malo, J., Ferri, F., Navarro, R., Valerio, R.: Perceptually and statistically decorrelated features for image representation: application to transform coding. In: Proceedings of the 15TH International Conference on Pattern Recognition, vol. 3, pp. 242–245 (2000)

    Google Scholar 

  27. Teo, P., Heeger, D.: Perceptual image distortion. In: Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 982–986 (1994)

    Google Scholar 

  28. Watson, B., Solomon, J.A.: Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14(9), 2379–2391 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valerio, R., Simoncelli, E.P., Navarro, R. (2003). Directly Invertible Nonlinear Divisive Normalization Pyramid for Image Representation. In: García, N., Salgado, L., Martínez, J.M. (eds) Visual Content Processing and Representation. VLBV 2003. Lecture Notes in Computer Science, vol 2849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39798-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39798-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20081-9

  • Online ISBN: 978-3-540-39798-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics