Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Testing a Simulated Annealing Algorithm in a Classification Problem

  • Conference paper
Stochastic Algorithms: Foundations and Applications (SAGA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2827))

Included in the following conference series:

Abstract

In this work we develop a new classification algorithm based on simulated annealing. The new method is evaluated and tested in a variety of situations which are generated and simulated by a Design of Experiments. This way, it is possible to find data characteristics that influence the relative classification performance of different classification methods. It turns out that the new method improves the classification performance of the classical Linear Discriminant Analysis (LDA) significantly in some situations. Moreover, in a real life example the new algorithm appears to be better than LDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eddelbüttel, D.: Object-oriented econometrics: Matrix programming in C++ using gcc and newmat. Journal of Applied Econometrics 11(2), 299–314 (1996)

    Article  Google Scholar 

  2. Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 199–209 (1993)

    Google Scholar 

  3. Harville, D.A.: Matrix Algebra From a Statisticians’s Perspective. Springer, Heidelberg (1997)

    Google Scholar 

  4. Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. The Annals of Statistics 23(1), 73–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  6. Heilemann, U., Münch, H.J.: West german business cycles 1963-1994: A multivariate discriminant analysis. In: CIRET-Conference in Singapore, CIRET-Studien 50 (1996)

    Google Scholar 

  7. Hinkelmann, K., Kempthorne, O.: Design and abalysis of experiments. introduction to experimental design, vol. I. Wiley, Chichester (1994)

    Google Scholar 

  8. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3), 299–314 (1996)

    Article  Google Scholar 

  9. Johnson, N.L.: Bivariate distributions based on simple translation systems. Biometrika 36, 149–176 (1949)

    MATH  MathSciNet  Google Scholar 

  10. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Röhl, M.C., Weihs, C., Theis, W.: Direct minimization of error rates in multivariate classification. Computational Statistics 17, 29–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sondhauß, U., Weihs, C.: Standardized partition spaces. In: Härdle, W., Rönz, B. (eds.) Proceedings in Computational Statistics, pp. 539–544 (2002)

    Google Scholar 

  13. ClausWeihs, U.G.: Stability of multivariate representation of business cycles over time. Technical Report 20, Sonderforschungsbereich 475, Universität Dortmund (2002)

    Google Scholar 

  14. Weihs, C., Hothorn, T.: Determination of optimal prediction oriented multivariate latent factor models using loss functions. Technical Report 15, Sonderforschungsbereich 475, Universität Dortmund (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luebke, K., Weihs, C. (2003). Testing a Simulated Annealing Algorithm in a Classification Problem. In: Albrecht, A., Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2003. Lecture Notes in Computer Science, vol 2827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39816-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39816-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20103-8

  • Online ISBN: 978-3-540-39816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics