Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tree Spanners for Bipartite Graphs and Probe Interval Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2880))

Included in the following conference series:

  • 681 Accesses

Abstract

A tree t-spanner T in a graph G is a spanning tree of G such that the distance between every pair of vertices in T is at most t times their distance in G. The tree t-spanner problem asks whether a graph admits a tree t-spanner, given t. We first substantially strengthen the known results for bipartite graphs. We prove that the tree t-spanner problem is NP-complete even for chordal bipartite graphs for t ≥ 5, and every bipartite ATE–free graph has a tree 3-spanner, which can be found in linear time. The best known before results were NP-completeness for general bipartite graphs, and that every convex graph has a tree 3-spanner. We next focus on the tree t-spanner problem for probe interval graphs and related graph classes. The graph classes were introduced to deal with the physical mapping of DNA. From a graph theoretical point of view, the classes are natural generalizations of interval graphs. We show that these classes are tree 7-spanner admissible, and a tree 7-spanner can be constructed in O(m log n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light-weighted spanners (1992) (manuscript)

    Google Scholar 

  2. Bandelt, H.-J., Dress, A.: Reconstructing the Shape of a Tree from Observed Dissimilarity Data. Advances in Applied Mathematics 7, 309–343 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandstädt, A., Chepoi, V., Dragan, F.: Distance Approximating Trees for Chordal and Dually Chordal Graphs. J. of Algorithms 30(1), 166–184 (1999)

    Article  MATH  Google Scholar 

  4. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings. Disc. Appl. Math. 82, 43–77 (1998)

    Article  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F., Chepoi, V., Voloshin, V.: Dually Chordal Graphs. SIAM J. Disc. Math. 11(3), 437–455 (1998)

    Article  MATH  Google Scholar 

  6. Brandstädt, A., Dragan, F.F., Le, H.-O., Le, V.B.: Tree Spanners on Chordal Graphs: Complexity, Algorithms, Open Problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 163–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  8. Cai, L., Corneil, D.G.: Tree Spanners: an Overview. Congressus Numerantium 88, 65–76 (1992)

    MathSciNet  Google Scholar 

  9. Cai, L., Corneil, D.G.: Tree Spanners. SIAM J. Disc. Math. 8(3), 359–387 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dragan, F.F., Voloshin, V.I.: Incidence Graphs of Biacyclic Hypergraphs. Disc. Appl. Math. 68, 259–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  13. Golumbic, M.C., Goss, C.F.: Perfect Elimination and Chordal Bipartite Graphs. J. of Graph Theory 2, 155–163 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harary, F., Kabell, J.A., McMorris, F.R.: Bipartite intersection graphs. Comment. Math. Univ. Carolin. 23, 739–745 (1982)

    MATH  MathSciNet  Google Scholar 

  15. Johnson, J.L., Spinrad, J.P.: A Polynomial Time Recognition Algorithm for Probe Interval Graphs. In: Proc. 12th SODA, pp. 477–486. ACM, New York (2001)

    Google Scholar 

  16. König, D.: Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft (1936) (in German)

    Google Scholar 

  17. Le, H.-O., Le, V.B.: Optimal Tree 3-Spanners in Directed Path Graphs. Networks 34, 81–87 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Madanlal, M.S., Venkatesan, G., Rangan, C.P.: Tree 3-Spanners on Interval, Permutation and Regular Bipartite Graphs. IPL 59, 97–102 (1996)

    Article  MATH  Google Scholar 

  19. McConnell, R.M., Spinrad, J.P.: Construction of Probe Interval Models. In: Proc. 13th SODA, pp. 866–875. ACM, New York (2002)

    Google Scholar 

  20. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  21. McMorris, F.R., Wang, C., Zhang, P.: On Probe Interval Graphs. Disc. Appl. Math. 88, 315–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Müller, H.: Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time. Disc. Appl. Math. 78, 189–205 (1997), Erratum is available at http://www.comp.leeds.ac.uk/hm/pub/node1.html

    Article  MATH  Google Scholar 

  23. Peleg, D.: Distributed Computing: A Locally-Sensitive Approach. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  24. Peleg, D., Schäffer, A.A.: Graph Spanners. J. of Graph Theory 13(1), 99–116 (1989)

    Article  MATH  Google Scholar 

  25. Prisner, E.: Distance approximating spanning trees. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  26. Soares, J.: Graph Spanners: a Survey. Congress Numerantium 89, 225–238 (1992)

    MathSciNet  Google Scholar 

  27. Venkatesan, G., Rotics, U., Madanlal, M.S., Makowsy, J.A., Rangan, C.P.: Restrictions of Minimum Spanner Problems. Inf. and Comp. 136, 143–164 (1997)

    Article  MATH  Google Scholar 

  28. Zhang, P.: Probe Interval Graphs and Its Applications to Physical Mapping of DNA (1994) (manuscript)

    Google Scholar 

  29. Zhang, P.: United States Patent. Method of Mapping DNA Fragments (July 3, 2000), [Online] Available http://www.cc.columbia.edu/cu/cie/techlists/patents/5667970.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandstädt, A., Dragan, F.F., Le, HO., Le, V.B., Uehara, R. (2003). Tree Spanners for Bipartite Graphs and Probe Interval Graphs. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39890-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20452-7

  • Online ISBN: 978-3-540-39890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics